MSS CCRS
Singapore Government
our-ppl-anurag-dipankar

Dr Anurag DIPANKAR

Senior Research Scientist
Department of Weather Research
Weather Modelling Development Branch

  • anurag_dipankar@nea.gov.sg

Dr Anurag DIPANKAR

As the head of the Weather Model Development (WMD) Branch, Dr Anurag Dipankar is responsible for the planning and execution of research activities for the development of SINGV (NWP model) and uSINGV (urban model). His team has experts on model dynamics and physics, data assimilation, ensemble modelling, and urban modelling. Much of WMD research activities are aimed at understanding the limitations of the various model components and subsequently work towards improving them.

Dr Anurag has extensive experience in atmospheric modelling, turbulence and convection, and numerical analysis. Before joining CCRS, he led the development of the large-eddy model (ICON-LEM) and also contributed to the development of the atmospheric general circulation model (ICON-A) at the Max Planck Institute for Meteorology in Hamburg

Dr Anurag is an active member of the study group on Integrated Urban Services, a WMO initiative, and is also involved in committee overseeing the Urban Heat Island related research in Singapore.

Education

    • 2007-2010
    • PhD, Institut Jean Le Rond d’Alembert, Université Pierre et Marie Curie, Paris
    • 1999-2006
    • BEng and MEng in Aerospace Engineering, Indian Institute of Technology Kanpur, India

Working Experience

    • 2016-present
    • Senior Research Scientist, Centre for Climate Research Singapore, MSS
    • 2010-2016
    • Scientist, Max Planck Institute for Meteorology, Hamburg, Germany
    • 2003-2004
    • Research Associate, Indian Institute of Technology Kanpur, India

Research Interests

  • Numerical weather and climate predictions
  • Large eddy simulation of atmospheric flows
  • Atmospheric turbulence and boundary layer parameterisation
  • Numerical methods

Dipankar, A, Webster, S, Sun, X, et al., 2020.

SINGV: A convective‐scale weather forecast model for Singapore.

Q J R Meteorol Soc. 2020; 1– 16. doi.org/10.1002/qj.3895

Simón‐Moral, A, Dipankar, A, Roth, M, et al., 2020.

Application of MORUSES single‐layer urban canopy model in a tropical city: Results from Singapore

Q J R Meteorol Soc. 2020; 146: 576– 597. doi.org/10.1002/qj.3694

Huang, X.-Y., Barker, D., Webster, S., Dipankar, A., Lock, A., Mittermaier, M., Sun, X.M., North, R., Darvell, R., Boyd, D., Lo, J., Liu, J.Y., Macpherson, B., Heng, P., Maycock, A., Pitcher, L., Tubbs, B., McMillan, M., Zhang, S.J., Hagelin, S., Porson, A., Song, G.T., Beckett, B., Cheong, W.K., Semple, A., and Gordon, C., 2019.

SINGV – the convective-scale numerical weather prediction system for Singapore.

ASEAN Journal on Science & Technology for Development, 36(3), 81-90, doi:10.29037/ajstd.581.

Dipankar, A., Webster, S., Huang, X.-Y., Doan, Q.V. 2019.

Understanding biases in simulating the diurnal cycle of convection over western coast of Sumatra: comparison with pre-YMC observation campaign

Mon. Wea. Rev., 147, 1615-1631. doi:10.1175/MWR-D-18-0432.1.

Sakradzija, M., A. Seifert, and A. Dipankar, 2016

A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone.

Journal of Advances in Modeling Earth Systems, 8, doi:10.1002/2016MS000634.

Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M. A., & Brdar, S, 2015

Large eddy simulation using the general circulation model ICON.

Journal of Advances in Modeling Earth Systems, 7, 963 – 986.

A. Dipankar, R. Marchiano, and P. Sagaut, 2009

Trajectory of an optical vortex in atmospheric turbulence.

Phy. Rev. E., 80(4),044609(1-9).

A. Dipankar and P. Sagaut, 2009

A new mixed phase-screen method for electromagnetic wave propagation in turbulent flows using large-eddy simulation.

J. Comput. Phys., 228(20), 7729-7741.

T.K. Sengupta, A. Dipankar and P. Sagaut, 2007

Error dynamics: Beyond von Neumann analysis.

J. Comput. Phys. 226(2), 1211-1218.

A. Dipankar, T. K. Sengupta and S. B. Talla, 2007

Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers.

J. Fluid Mech. 573, 171-190.

T. K. Sengupta, A. Dipankar and A. Kameswara Rao, 2007

A new comptact scheme for parallel computing using domain-decomposition.

J. Comput. Phys. 220(2), 654-677.

A. Dipankar and T. K. Sengupta, 2006

Symmetrised comptact scheme for receptivity study of 2D transitional channel flow.

J. Comput. Phys. 215(1), 245-263.

T K Sengupta, S K Sircar and A. Dipankar, 2006

High accuracy schemes for DNS and acoustics.

J. Sci. Comput. 26(2), 151-193.

T. K. Sengupta and A. Dipankar, 2005

Sub critical instability on the attachment-line of an infinite-swept wing.

J. Fluid Mech. 529, 147-171.

T. K. Sengupta, R. Jain and A. Dipankar, 2005

A new flux-vector splitting compact finite volume scheme.

J. Comput. Phys. 207, 261-281.

A. Dipankar and T. K. Sengupta, 2005

Flow past a circular cylinder in the vicinity of a plane wall.

J. Fluids Struct., 20, 403-423.

T. K. Sengupta and A. Dipankar, 2004

A comparative study of time advancement methods for solving Navier-Stokes equations.

J. Sci. Comput. 21 (2), 225-250.

T. K. Sengupta, G. Ganeriwal and A. Dipankar, 2004

High accuracy compact schemes and Gibbs’ phenomenon.

J. Sci. Comput., 21(3), 253-268.