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EDITOR’S NOTE. 
Dear Readers, 

I am happy to present the sixth issue of MSS Research Letters. I also take this opportunity to wish all our readers a very 

happy 2021! The year 2020 was an unpredictable ride through the pandemic, with many challenges for people across 

the globe. Let’s embrace 2021 with a positive and cheery spirit that will help us cope with this current situation until we 

see light at the end of the tunnel.  

The sixth issue of MSS research Letters presents three articles. All three have been contributed by our MSS staff. The 

first letter is an interesting case study on 2008-2009 seasonal pollution plumes over Singapore showing that they vary 

with respect to monsoon season with their impact being severe during the winter monsoon. The second letter involves 

a locally-tuned Heavy Rain Total Threat Score tool that can be used as an early indicator of heavy rain events hours 

before flash flood occurrences in Singapore. The third and final letter is on the characterisation of wet and dry spells 

within monsoon seasons over the Malaysian peninsula and Singapore.  

I would like to thank the authors and reviewers of this issue, for their valuable contributions. My sincere 

acknowledgement goes to Micheline Fong who has helped through the various stages of the editorial tasks of the MSS 

Research Letters.  

Enjoy this issue of MSS Research Letters, and I am looking forward to having more contributions in the next issues.  

Take care and stay safe, 

Hindumathi Palanisamy 

Editor, MSS Research Letters  

 

 

 

 

 

 

 

 

 

 

Cover figures: top left – Seasonal mean concentrations of O3, in [NOFIRE] as a relative fraction of [BASE], during the (a) 

summer monsoon and (b) winter monsoon. The sub-regional simulation is overlaid on the regional simulation (Page 8); 

top right – Map of Singapore showing the locations of the 28 rainfall stations used for climate monitoring (bottom right 

alpha-numbers indicate the station codes) (Page 14); bottom – Number of wet and dry spells from 1981 to 2017 

calculated using CHIRPS, for (a) all years, (b) El-Niño phase years only, (c) La-Niña phase years only computed for the 

domain of interest (Page 29).   
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ABSTRACT 
A 1.4 km-resolution simulation of air quality over 

Singapore using the Community Multiscale Air Quality 

(CMAQ) model was verified against measurements from 

14 monitoring sites on the island, for the period of April 

2008 to March 2009. Ozone and nitrogen dioxide were 

generally well-simulated, but less so when they fell 

under pollution plumes downstream of power stations. 

The plumes vary with monsoon season and their impact 

on domestic air quality was more severe during the 

winter monsoon. 

1 INTRODUCTION 
Poor air quality has been shown to impact human 

health. Long-term exposure to ambient ozone (O3) and 

fine particulate matter (PM2.5) has been repeatedly 

linked with increased risk of premature mortality and 

morbidity (Burnett et al., 2014; Hoek et al., 2013), and 

the World Health Organization (WHO) has indicated that 

exposure to other air pollutants such as nitrogen dioxide 

and sulphur dioxide may constitute a health risk (WHO, 

2013, 2016a, 2016b). The annual cost of the health 

impact due to air pollution for the East Asia and Pacific 

region was estimated to be 4.5% of the regional Gross 

Domestic Product (The World Bank, 2016). The 

Singapore government sought to meet the 2005-revision 

of WHO guidelines by 2020 (Ministry of Environment and 

Water Resources, 2014; WHO, 2006), and evaluation of 

this target is ongoing at the time of writing. 

Air pollution comes from both city and 

transboundary sources (Latif et al., 2018). Studies of 

Singapore's air quality have affirmed regional biomass 

burning to be the dominant contributor to domestic 

pollution during intense burning years (Hertwig et al., 

2015; Hyer and Chew, 2010; Koe et al., 2001; Lee et al., 

2018; Mead et al., 2018; Salinas et al., 2013; Velasco and 

Rastan, 2015). The burning in turn is influenced by a 

multitude of meteorological and economic factors (Field 

et al., 2009; Marlier et al., 2013; Tangang et al., 2017). 

The focus on intense but brief burning events can neglect 

the role that pollution sources within Singapore play in 

chronic exposure. The impact of large signals from 

biomass burning events do not rely heavily on the local 

atmospheric chemistry and environment. In contrast, 

during “non-hazy” conditions, the spatio-temporal 

profile of pollutants throughout Singapore may depend 

on both remote and local sources. The city-state's small 

size results in the near co-location of different polluting 

sources such as ports, petrochemical refineries, power 

plants, light industries and downtown traffic, together 

with residential emissions from a population of 5.6 

million inhabitants in an area of only 720 km2. 

It is advantageous to simulate the city's air quality 

under relatively “non-hazy” conditions, to establish a 

baseline against which an intense burning episode can 

be compared (Velasco and Roth, 2012). Air quality 

deterioration brought about by regional biomass 

burning is commonly termed as “hazy”. Strictly speaking, 

one would expect some contribution from biomass 

burning emissions even under "non-hazy" conditions. 

Hence, an additional sensitivity simulation without 

biomass burning emissions was carried out, to evaluate 

the relative contribution of biomass burning to “non-

hazy” air quality. 

This report focuses on ozone (O3) since it has 

been most consistently associated with health impacts 

(WHO, 2013). An additional pollutant monitored by the 

National Environment Agency (NEA), nitrogen dioxide 

(NO2) is also evaluated due to its influence on O3. 

2 DATA AND METHOD 

2.1 EXPERIMENTAL DESIGN 
Air quality was simulated using a series of nested 

chemistry transport models (Fig 1a-c), termed [BASE]. 
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The simulated surface concentrations of O3 and NO2 

were compared to reanalysis and monitoring data, 

described in the "Observational data" sub-section. 

Another set of simulations without biomass burning 

emissions is termed [NOFIRE]. 

 

 
Figure 1. (a)-(c): The simulation domains used are coloured 

white in the map, while land-sea mask is coloured black; (a) 

regional, (b) sub-regional, (c) local. Arrow shows approximate 

location of the next nest. (d) The monitoring sites used for 

verification marked by circles. The grid shows the 1.4 km 

resolution of the local simulation. 

 

Several criteria constrained the selection of a 

suitable study period: firstly, low regional biomass 

burning or atypical haze plumes pulled over the island by 

synoptic conditions; secondly, no strong El Niño 

Southern Oscillation (ENSO) extremes, to avoid the 

associated atypical meteorology; thirdly, availability of 

emission inventories for the study period. The most 

suitable period at the time of the study was April 2014 to 

March 2015, but emissions inventories were incomplete 

for this period at the time of the study. The next suitable 

period of April 2008 to March 2009 was selected for 

simulation. Based on these criteria, April 2008 to March 

2009 was selected. The Fire Inventory from NCAR (FINN) 

biomass burning inventory used in this study reported 23 

Tg of carbon monoxide (CO) emitted in this region (95 ˚E 

to 125 ˚E, 10 ˚S to 15 ˚N) during the target period. This 

was low compared to an average annual release of 32 Tg 

of CO. This period was Niña-like transitioning into the El 

Niño of 2010, avoiding the El Niño period of summer 

2009-spring 2010 and the strong extended La Niña 

period of summer 2010 to spring 2012. Note the same 

2008-2009 period was used during the verification of the 

meteorological model. 

 

2.2 AIR QUALITY MODEL 
The Community Multiscale Air Quality model 

version 5.2 (CMAQ; Byun and Schere, 2006) was set up 

using three nested domains with increasingly fine 

horizontal resolutions as shown in Fig. 1a-c: 35 km 

(regional), 7 km (sub-regional), and 1.4 km (local). The 

chemistry setup was the Carbon Bond Mechanism 

version 5 (CB05) with aerosol module version 5 

(cb05cl_ae5_aq). Each parent domain provided 

boundary conditions for its child domain. 

Boundary conditions for the outermost domain 

were provided by GEOS-Chem version 9-02 (Bey et al., 

2001; Lam and Fu, 2009). This global simulation was 

performed at a resolution of 4° latitude  5° longitude, 

using meteorology provided by the NASA Global 

Modeling and Assimilation Office from their GEOS data 

assimilation system. 

Meteorological forcing for each CMAQ simulation 

was provided by the Weather Research and Forecasting 

model v3.3 (WRF; Skamarock et al., 2008), run with three 

nested domains of identical resolution. This 

configuration of WRF has been extensively calibrated 

and validated for Singapore (Li et al., 2013, 2016a, 

2016b). 

 

2.3 EMISSIONS INVENTORY 
Anthropogenic gaseous and particulate air 

pollutant emissions were taken from the Emissions 

Database for Global Atmospheric Research version 4.3.1 

(EDGAR; Crippa et al., 2016), of spatial resolution 0.1° × 

0.1°. The emissions were in monthly mean format and 

monthly means of the study period were used. These 

emissions were adjusted to diurnal emission profiles that 

were based on USA and European emission inventories 

(Wang et al., 2007, 2010; Kannari et al., 2007; Yim et al., 

2015). Source-specific chemical speciation profiles from 

the United States Environment Protection Agency 

(USEPA) SPECIATE database version 4.4 were assumed 

for volatile organic compounds (VOCs), PM2.5, nitric 

oxide/nitrogen dioxide (NOx), and sulphur dioxide (SOx) 

emissions (USEPA, 2014; Simon et al., 2010; Li et al., 

2017). Anthropogenic aviation sector emissions were 

calculated using the Aviation Emissions Inventory Code 

(AEIC v2.1; Simone et al., 2013), based on 2005 values. 

Biogenic emissions were estimated using the Model of 

Emissions of Gases and Aerosols from Nature version 2 

(MEGAN; Guenther et al., 2012), and adjusted with 

diurnal profiles (Guenther et al., 1999). Biomass burning 

emissions for the simulation period were taken from the 

Fire Inventory from NCAR version 1.5 database (FINN; 

Wiedinmyer et al., 2010), at a 1 km resolution. Fire 

plume rise was calculated using the formulation of Briggs 

(1965) and fuel-specific energy fluxes of Freitas et al. 

(2006).  

A major hindrance to high resolution modelling 

over the local domain was the unavailability of high 

resolution local emission inventories. Hence, high 

resolution spatial surrogates were used to downscale 
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global inventories to 1.4 km spatial resolution for the 

local simulation. Land surface transportation emissions 

were downscaled using road density calculated by 

aggregating vector data from OpenStreetMaps 

(available at https://planet.openstreetmap.org). 

Residential emissions were downscaled using population 

density from Landscan (Bright et al., 2012). Industrial 

sector emissions were downscaled using industrial land 

footprint, estimated by rasterizing and re-gridding the 

Singapore Land Authority's industrial site map, and 

Iskandar Malaysia's current and proposed development 

plans. Power generation emissions in Malaysia were 

downscaled to power plant locations from the Global 

Energy Observatory, using their type and capacities. 

Those in Singapore were downscaled to power plant 

locations from visual inspection of Google Maps satellite 

imagery using operating capacities deduced from their 

relative ratio of SO2 emissions (NEA, 2015). The power 

generation emissions were distributed vertically (Wang 

et al., 2010).. Shipping sector emissions were 

downscaled to aggregated ship position information 

(Corbett and Koehler, 2003). 

 

2.4 OBSERVATIONAL DATA 
Regional observations of air quality were sparse, 

but records of annual mean concentrations of NO2 were 

available for different cities and years from the WHO 

Global Urban Ambient Air Pollution Database (WHO, 

2016c) and Clean Air Asia (http://cleanairasia.org/ 

publications). Observations for the simulation period 

were missing at many sites due to the sparse data. For 

the regional simulation, the simulated range of daily 

mean pollutant values from the grid-point closest to the 

measurement site was compared against the range of 

these annual mean measurement values. Simulated 

annual mean surface concentrations of O3 and NOx were 

also compared against values from the Monitoring 

Atmospheric Composition and Climate (MACC; Inness et 

al., 2013) reanalysis at the lowest model level 

(~10m).The MACC reanalysis has a native resolution of 

70 km. 

For the local simulation, the 14 NEA monitoring 

sites in Singapore were used for verification (Fig. 1d). 

Hourly observations were provided in units of μg m-3; 

gaseous pollutants were converted back to ppbV 

through division by fixed factors from NEA. 

Verification of daily mean concentrations was 

performed separately for the two monsoons based on 

local climate; The Meteorological Service Singapore 

(2012) defines the summer monsoon as June-September 

(SUM), and the winter monsoon as December-March 

(WIN). Ranges of daily mean concentrations from the 

local simulation and monitoring sites were compared 

and considered as ’similar‘ (green) with an overlap of the 

quartile range, ’biased‘ (blue) with an overlap of the 

10th-90th percentile range, and ’erroneous‘ (red) 

without overlap of the 10th-90th percentile range. 

Verification of pollutant diurnal cycle was done by 

comparing the ranges of hourly mean concentrations. 

Both values from the grid-point in the local 

simulation closest to the monitoring site, as well as the 

mean of nine grid-points surrounding the site, were 

compared against the range of daily mean observations. 

The differences between the two methods were minor, 

with the mean quantity having weaker extremes. The 

results shown below used nine grid-point means. When 

calculating correlations, the five-day running mean over 

all sites was used to focus on the variation of pollutant 

level with weather patterns rather than day-to-day 

variations. 95% confidence intervals (C.I.) for correlation 

coefficients are shown in brackets behind the correlation 

values. 

3 RESULTS 

3.1 REGIONAL DOMAIN (35 KM × 35 KM 

RESOLUTION) 
Fig. 2 shows the annual mean surface 

concentrations of NO2 from the regional simulation, 

which were close to the median observation at available 

sites, with the exception of the stations in Cambodia. 

 

 
Figure 2. NO2 surface concentrations (ppbV), comparing the 

annual mean from the regional simulation against medians of 

observed annual means when available (circles).  

 

Fig. 3 compares annual mean surface 

concentrations of NOx and O3 from the regional 

simulation against the MACC reanalysis. Spatial patterns 

were qualitatively similar, but absolute values were 

different when regridded to the same resolution (not 

shown). O3 was lower over Borneo Island (below 15 
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ppbV). The regional simulation resolved pollution 

patterns over major cities; high concentrations of NOx 

were found over Java Island, the Strait of Malacca, and 

the Bangkok region. O3 concentrations could be lower or 

higher over these urban areas. 

 

 
Figure 3. (a)-(b): O3 annual mean surface concentrations 

(ppbV), comparing (a) regional simulation with (b) MACC 

reanalysis. (c)-(d) similar for NOx. 

 

3.2 LOCAL DOMAIN (1.4 KM × 1.4 KM 

RESOLUTION) 
The site-based comparison of Fig. 4 shows good 

performance simulating O3 over the island. Simulated 

and observed ranges were similar for all sites except 

Jurong Island (P27) during the winter monsoon. The 

correlation between simulation and observation was 

0.75 (0.66 - 0.82) and 0.43 (0.27 - 0.56) during the winter 

and summer monsoon, respectively. 

The sites measuring O3 were a subset of sites 

measuring NO2. From the site-based comparison of Fig. 

5, NO2 was better simulated during the summer than the 

winter monsoon; 8 of 14 sites showed similar ranges 

during the summer monsoon, while only 4 of 14 sites 

showed similar ranges during the winter monsoon. The 

correlation between simulation and observation was 

0.28 (0.11 - 0.44) and 0.60 (0.47 - 0.70) during the winter 

and summer monsoon, respectively. 

Spatial plots of seasonal mean surface 

concentrations in Fig. 5 suggest a reason for this seasonal 

discrepancy -- seasonal pollutant plumes downwind of 

power stations. O3 concentrations were lower inside the 

plumes (Fig 6a-b). This should not be considered "better 

air quality" since NO2 concentrations were elevated 

inside the plumes (Fig. 6c-d). NO2 concentrations were 

better simulated when sites were outside of the plumes.  

 

 
Figure 4. Daily mean surface O3 concentrations (ppbV), 

comparing the local simulation (blue bars) with monitoring 

data (red bars), during the (a) summer monsoon and (b) 

winter monsoon. Bars are marked at 10th, 25th, 50th, 75th 

and 90th percentile values. Green, blue and red stations 

indicate similar, biased, and poor matches with observations, 

respectively (see Observational data section). 

 

 
Figure 5. Similar to Fig. 4 but for NO2 concentrations (ppbV). 

 

We can classify the monitoring sites by visual 

inspection of Figure 6 as follows: Strongly affected by 

plumes during winter (W) or summer (S) monsoons; 

weakly affected by plumes during winter (w) or summer 

(s); outside of plumes (X). Some sites may be affected by 

plumes during both monsoons, but all of these sites were 

more strongly affected in one season. The subset of sites 

also recording O3 is in bold text. 

Sites strongly affected by plumes: Ws17, Ws27, 

Ws31, Ws34 (both seasons); W15, S09 (one season). 

Sites weakly affected by plumes: w03, w20, w33, s24 

(one season). Sites outside plumes: X18, X25, X28, X29. 

The relative seasonal change was not as well-

simulated. Observed O3 concentrations were higher 

during the winter than summer monsoon, at all sites 

except Jurong Island (Ws27). The same relative change 

was seen in the simulations for sites that lie outside 

wintertime pollution plumes (S09, s24 and X28). The 



Issue #6 MSS Research Letters Page 7 
 

 

reverse change (lower wintertime) was seen at sites that 

lie inside those plumes (Ws27, Ws31, w03, w20). Hence, 

the relative seasonal change was correctly simulated at 

4 of 7 sites (Ws27, S09, s24, X28). 

Simulated NO2 concentrations were higher during 

the winter than summer monsoon at the 7 sites affected 

by winter pollution plumes (Ws17, W15, Ws27, Ws31, 

w03, w20, w33), as well as X25. This effect of the plumes 

was not always observed. The relative seasonal change 

of NO2 was reproduced at most sites except for 4 sites 

(Ws17, Ws31, w03, w20). All 4 sites were affected by 

wintertime pollution plumes. 

NO2 was best simulated at the 5 monitors on the 

eastern side of the island (X18, X25, X28, w33). The 

median of simulated daily mean NO2 concentration lay 

within ±3 ppbV of the observed value, and the relative 

seasonal change was correctly simulated. The relative 

seasonal changes of O3 and NO2 were both correctly 

simulated in unison at Ws27, S09, s24, and in a sense X28 

where little change between seasons was observed. 

 

 
Figure 6. (a)-(b): Seasonal mean surface concentrations of O3 

(ppbV), comparing the local simulation (shading) against 

observations (circles), during the (a) summer monsoon and 

(b) winter monsoon. The local simulation is overlaid on the 

sub-regional simulation. Red, blue, green inner circles 

respectively indicate an increasing quality match between 

observation and model. Grey inner circles indicate stations 

without observations for the species. White stars indicate the 

locations of power stations. (c)-(d) similar for NO2. 

 

3.3 DIURNAL VARIABILITY 
Fig. 7 shows the range of hourly mean surface 

concentrations for O3 and NO2. The simulation 

reproduced the key features of the diurnal cycles, 

despite biases. The one-hour phase shift between 

simulated and observed diurnal cycles was expected as 

policy-based local time (GMT+8) is one hour ahead of 

what would be expected from longitude (GMT+7). 

From Fig. 7a, the observed peak median O3 

concentration was ~18 ppbV at 1400-1500 local time. 

Day-time O3 concentrations were well simulated in 

terms of both median value and interquartile range, but 

simulated concentrations were biased by ~5 ppbV. From 

Fig. 7b, the diurnal pattern of NO2 was similarly well 

captured, particularly day-time values of median ~13 

ppbV during 0900-1600 local time. Simulated night-time 

concentrations were ~5 ppbV higher than observed. This 

excessive night-time build-up of NO2 was consistent with 

the excessive daytime O3.  

 

 
Figure 7. The diurnal cycle of hourly mean surface 

concentrations (ppbV), comparing the local simulation (blue 

bars) with monitoring data (red bars), for (a) O3 and (b) NO2. 

Bars are marked at 10th, 25th, 50th, 75th, and 90th percentile, 

averaged over all monitoring sites measuring that species. 

 

3.4 SIMULATIONS WITHOUT BIOMASS 

BURNING 
Fig. 8 shows the seasonal mean surface 

concentration of O3 from the [NOFIRE] simulations as a 

fraction of concentrations from [BASE]. Despite the 

lower than normal levels of biomass burning, it had a 

large regional impact during the summer monsoon, 

specifically northwest of Borneo and over Sumatra. 

Simulated O3 concentrations from [BASE] were about 

twice that from [NOFIRE] during the summer monsoon.  

However, the impact of biomass burning on local 

O3 was relatively minor during the study period; O3 

concentrations from [NOFIRE] differed from [BASE] by 

only about 10% or less.  
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Figure 8. Seasonal mean concentrations of O3, in [NOFIRE] as 

a relative fraction of [BASE], during the (a) summer monsoon 

and (b) winter monsoon. The sub-regional simulation is 

overlaid on the regional simulation. 

4 DISCUSSION 
O3 and NO2 were best simulated at sites on the 

east side of Singapore, likely because these sites were 

relatively unaffected by pollutant plumes. At four of the 

sites affected by wintertime pollution plumes (Ws27, 

Ws31, w03, w20), the simulated increase in NO2 from 

summer to winter monsoon greatly exceeded that 

observed, and relative seasonal change in O3 was 

wrongly simulated except at Ws27. In contrast, sites 

outside the wintertime plumes correctly simulated the 

relative seasonal changes of both NO2 and O3 (S09, s24, 

X28). 

The adverse effect of plumes may be caused by 

the over-estimation of power plant NOx emissions during 

the winter monsoon. This is supported by an 

examination of the EDGAR inventory: Firstly, local NOx 

emission was dominated by the energy and 

transportation sectors, and only the energy sector had a 

strong seasonal dependence. Secondly, the Singaporean 

NOx emission for 2008 was ~30 Gg greater than (~1.25 

times of) that given by another inventory, MIX.  

Ws27 (Jurong Island) was particularly noteworthy. 

During winter, the simulation of O3 and NO2 was inferior. 

The performance of chemistry there may be different 

compared to the rest of Singapore, perhaps due to the 

presence of both power plant and major petrochemical 

industry. 

5 SUMMARY 
The April 2008-March 2009 period, a time of low 

regional biomass-burning, was simulated over three 

nested domains using the Community Multi-scale Air 

Quality (CMAQ) model v5.2 with the carbon bond 

mechanism version 5 (CB05). Surface concentrations of 

O3 and NO2 were verified against observations from 14 

Singaporean sites and found to be generally well-

simulated. 

Air quality at specific sites was strongly affected 

by downwind seasonal plumes from power plants. O3 

and NO2 were less well simulated at these sites, 

particularly in terms of biases and relative seasonal 

variations. Due to the sizeable impact of pollution 

plumes, we recommend that future air quality analyses 

take into account seasonal chemistry along pollution 

plumes. In this study, the extent of the plumes was 

determined by visual inspection. Future work with 

plume models or trajectory tracking models would be 

able to better evaluate the extent these plumes affect 

different locations over the island. 

We recommend future research in the local 

domain focused on constraining power plant emissions 

and chemistry inside power plant plumes. Power plants 

and petrochemical industries are good candidates for 

study due to their impact on the air quality over almost 

half the sites in Singapore. 
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Overview of a locally-tuned Heavy Rain’s Total Threat Score (TTS) 
tool and its recent application using satellite-derived soundings 
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ABSTRACT  
Driven by growing public demand in Singapore for 

better forecasts of flash floods, there is a need to 

issue heavy rain warnings at longer lead times. MSS 

conducted a local study of atmospheric morning 

soundings in 2013/2014 to identify potential 

thermodynamic parameters and severe weather 

indices that could be used as an early indicator of 

heavy rain events hours before the flash flood 

occurrence in Singapore. A locally-tuned Heavy Rain 

Total Threat Score (TTS) tool, based on a matrix of 

heavy rain predictors for each season (Northeast 

Monsoon, Southwest Monsoon and Inter-

Monsoons) was developed at the end of 2014. This 

objective guidance tool aims to increase the 

forecaster’s confidence in issuing a heavy rain 

warning earlier if the TTS score is high that day. 

Recently, a preliminary TTS evaluation using ‘NOAA 

Unique Combined Atmospheric Processing System 

(NUCAPS)’, a satellite-derived afternoon sounding 

from late 2018 to early 2020, was able to capture 

the deterioration of atmospheric conditions during 

heavy rain events in the late afternoon and also 

provide a good discrimination between heavy and 

non-heavy rain events. The future 

operationalization of the afternoon NUCAPS’ TTS 

tool will further empower the forecasters’ ability to 

track changes in heavy rain threat across the day. 

1 INTRODUCTION 
Rain-bearing weather systems in tropical regions 

are complex, as convective rain clouds develop 

rapidly and have short-life spans. The development 

of tropical weather is largely driven by winds, which 

tend to be weaker and more variable in direction in 

the tropics. As a result, it is difficult to give precise 

forecasts of onset, location and intensity of 

thunderstorms. Thunderstorms occur frequently in 

Singapore and can occasionally bring heavy rain, 

lightning, and sometimes hail. As part of the daily 

operations in the Weather Services Division (WSD) 

of Meteorological Service Singapore (MSS), the 

duty meteorologist for public weather is required to 

issue warnings of heavy rain if the impending 

thunderstorm is forecast to develop to a certain 

hazardous intensity and/or duration before a flash 

flood occurrence. The provision of the heavy rain 

warning is achieved by close monitoring of 

convective activity using real-time observation data 

from satellite images (primarily from Himawari-8, a 

geostationary weather satellite operated by the 

Japan Meteorological Agency), ground-based 

weather radar, wind profiler radar and low-level 

wind convergence field (from a network of 

automated weather stations installed in various 

parts of Singapore). Heavy rain warnings typically 

have a lead time of 15 to 30 minutes. However, 

driven by the growing public demand for better and 

timelier forecasts, there is a need to issue heavy 

rain warnings at longer lead times. 

 

Previous studies (Craven and Brooks, 2004; 

Groenemeijer, 2005) have identified different 

clusters of thermodynamic parameters and severe 

weather indices exhibiting considerable skill in 

distinguishing environments of large hail/non-hail-

producing thunderstorms, tornadoes (including 

waterspouts) and severe convective wind events in 

the continental United States and the Netherlands 

respectively. Another study (Müller, 2009) 

focussing on central Europe demonstrated that 

extreme large-scale precipitation can be properly 

characterised by the extremeness of selected 

dynamic and thermodynamic variables. 

Encouraged by these findings, a systematic local 

study of atmospheric morning soundings was 

conducted by MSS in 2013/2014 to identify 

potential thermodynamic parameters and severe 

weather indices that could be used as an early 
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indicator of heavy rain events hours before the 

flash flood occurrence in Singapore. 

 

This letter describes the data and methods used to 

identify a matrix of locally-tuned heavy rain 

predictors for each season, operationalization of 

the heavy rain’s Total Threat Score (TTS) sounding 

tool at the end of 2014, and more recently, a 

preliminary evaluation of utilizing ‘NOAA Unique 

Combined Atmospheric Processing System 

(NUCAPS)’, a satellite-derived afternoon sounding, 

as an upgrade to the TTS morning sounding tool. 

 

2 DATA AND METHODS 

2.1 ‘Heavy Rain Event’ dataset 
Meteorological Service Singapore has since 1980 

recorded hourly rainfall data across an island-wide 

network of 28 real-time automatic weather 

stations’ (AWS) rain gauges. The distribution of 

stations across the island is shown in Figure 1. For 

this study, data from 1991 to 2012 were used to 

compute a multi-station daily series of “hourly 

rolling 2-hour total accumulated” rainfall amount. A 

heavy rain event is considered to have been 

observed for a day if the “hourly rolling 2-hour total 

accumulated” rainfall amount exceeds or equals 45 

mm for any of the 28 AWS on that day. The 

rationale of using the “hourly rolling 2-hour total 

accumulated” rainfall amount instead of the 

standard “1 hour total” rainfall amount was to 

capture more extreme rain events that may start 

halfway through an hour and extend into the next 

hour (the duration of a thunderstorm typically 

ranging from ½ hour to 1½ hours). Only heavy rain 

events occurring from 0100UTC to 1300UTC (9am-

9pm, local time) were included in the “heavy rain 

event” dataset for this study.  

 

2.2 ‘Thermodynamic parameters’ 

dataset from soundings 
Weather balloons are launched twice daily (at 0000 

UTC and at 1100UTC) at the Upper Air Observatory 

(UAO) located in Paya Lebar, Singapore. A 

Figure 1. Map of Singapore showing the locations of the 28 rainfall stations used for climate monitoring 
(bottom right alpha-numbers indicate the station codes). 
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radiosonde attached to the weather balloon 

measures vertical atmospheric conditions 

(pressure, temperature, dew point, wind 

direction/speed) up to a height of 30 km. This 

sounding data can be obtained from the University 

of Wyoming’s upper air sounding website 

(http://weather.uwyo.edu/upperair/sounding.htm

l) over the same 1991-2012 period (the period of 

our heavy rain database). A multi-functional 

sounding analysis program, Universal RAwinsonde 

OBservation software (RAOB, 

http://www.raob.com) package developed by 

Environment Research Services (ERS) was used to 

process the sounding data and to generate a list of 

60 thermodynamic parameters and severe weather 

indices (please refer to this link, 

http://www.raob.com/displays.php for the full list 

of atmospheric parameters). Only the morning 

soundings (at 0000 UTC) were processed as they are 

more indicative of any convective activity that 

might occur later in the day. 

 

2.3 Selection of Predictors for 

heavy rain events  
The selection of the most likely predictors for heavy 

rain events, out of the original list of 60 

parameters/indices, largely followed the 

approaches used by Bauman (2013) and Bauman 

and Roeder (2014), with two modifications. Firstly, 

the classification of the ‘heavy rain event’ dataset 

and sounding dataset into 3 seasonal categories – 

1) Northeast Monsoon, 2) Inter-monsoons and 3) 

Southwest Monsoon – was performed, as 

Singapore’s weather is dominated by the 

Monsoons. Singapore’s climate is characterised by 

two monsoon seasons separated by inter-

monsoonal periods. The Northeast Monsoon 

typically occurs from December to early March, and 

the Southwest Monsoon from June to September. 

Secondly, if there was rain in the vicinity of the UAO 

from 2200 UTC (6 AM) to 0100 UTC (9 AM) for any 

day, that day was excluded from the study so as to 

prevent any wet sounding contamination. The 

numbers of the sample size (i.e. days with sounding 

availability and no rain in the vicinity) for the 

Northeast Monsoon, Southwest Monsoon and 

Inter-monsoons were 2336, 2204 and 2283 

respectively, which was sufficient for a robust 

statistical analysis. The number of heavy rain days 

observed during the study period (and its 

climatological chance of heavy rain occurrence) for 

the Northeast Monsoon, Southwest Monsoon and 

Inter-monsoons were 380 (380/2336 ≈ 16%), 254 

(254/2204 ≈ 12%) and 467 (467/2283 ≈ 20%) 

respectively. 

 

For each of the 60 parameters, we pooled together 

all days with specific threshold intervals binned by 

either 3 to 5 indices (Very Low, Low, Moderate, 

High and Very High). The lower/upper thresholds of 

each threshold interval were largely determined by 

trial and error with some educated reference using 

the mean value and standard deviation of each 

Figure 2: Stacked bar chart of “Storm Speed” parameter for the low, moderate, high and very high index in the 
inter-monsoon seasons. The respective number of days with reported heavy rain events (blue) and days with 
no reported heavy rain events (red) for each index is reflected in the coloured bars and the % of occurrence 
from the Y-axis. 

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://www.raob.com/displays.php
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parameter. A stacked bar chart (Figure 2) was then 

used to display the percentage occurrence of 

reported/no reported heavy rain events for each 

index. If there was an increasing slope of 

percentage of heavy rain occurrence from the 

lowest to the highest index in the stacked bar chart, 

a good heavy rain predictor was considered to have 

been identified. The percentages of heavy rain 

occurrence for the ‘Low’, ‘Moderate’, ‘High’ and 

‘Very High’ index of the ‘storm speed’ parameter in 

the inter-monsoon seasons (Figure 2) are 4%, 12%, 

23% and 33% respectively, and the increasing slope 

indicates that the ‘storm speed’ parameter is a 

good heavy rain predictor. 

 

2.4 Total Threat Score (TTS) and 

Best-fit Logistic Curve 
Once the predictors for heavy rain events had been 

identified, a ‘Threat Score’ (TS) was calculated by 

taking the difference between the percentage of 

heavy rain occurrence for each index of the 

predictor and the climatological chance of heavy 

rain occurrence for this monsoon (20% for inter-

monsoons, 16% for Northeast Monsoon and 12% 

for Southwest Monsoon). As an illustration using 

Figure 2, the threat scores for the ‘Low’, 

‘Moderate’, ‘High’ and ‘Very High’ index of the 

‘storm speed’ heavy rain predictor are -16%, -8%, 

3% and 13% respectively. A list of heavy rain 

predictors was identified for the three seasons and 

on every available sounding day, a ‘Total Threat 

Score’ (TTS) was computed by summing equally 

each individual heavy rain predictor’s TS, 

normalized to a [0,100] range based on the 

theoretical lowest and highest possible TTS. Then, 

all days with the same TTS were grouped together 

and the chance of heavy rain for this TTS calculated 

as the total number of heavy rain days in this pool 

divided by total number of days in the same pool. 

The resolution of the TTS is in increments of one 

and we can infer from the combination method that 

the higher a TTS value, the higher the likelihood of 

a heavy rain occurrence on that day. 

 

Using Systat Software’s SigmaPlot 

(https://systatsoftware.com/products/sigmaplot/s

p-overview/), a 5-parameter logistic (5PL) equation 

was used to fit the raw TTS. The ‘SigmaPlot’ 

software is able to swiftly create graphs of many 

complex mathematical functions, and makes data 

visualisation easier. The 5PL equation is 

characterized by its classic “S” or sigmoidal shape 

that fits the bottom and top plateaus of the curve 

and constrains the extreme ends of the curve to be 

within 0% to 100% (chance of heavy rain cannot be 

less than 0% or more than 100%). 

 

2.5 ‘NOAA Unique Combined 

Atmospheric Processing 

System (NUCAPS)’ dataset 
NOAA Unique Combined Atmospheric Processing 

System (NUCAPS) (Gambacorta, 2013) utilizes the 

CrIS (Cross-Track Infrared Sounder) and ATMS 

(Advanced Technology Microwave Sounder) 

instruments aboard the polar orbiting Suomi-NPP 

satellite to retrieve vertical temperature and 

moisture profiles. The NUCAPS sounding has a 

global coverage, with a horizontal spatial resolution 

of 0.5 degrees. The vertical resolution varies 

between 1km and 4km depending on atmospheric 

pressure. Specifically, the derived sounding consists 

of 100 fixed points between 1100 mb and 0.016 mb. 

Suomi-NPP typically passes over the region around 

Singapore in the afternoon between 0500UTC and 

0700UTC (1pm to 3pm Local Time), allowing our 

operational forecasters a chance to analyse the pre-

convective atmospheric environment in the early 

afternoon. The NUCAPS soundings provide a unique 

opportunity to examine the vertical temperature 

and moisture profiles during the temporal gap of 

traditional weather balloon soundings between 

0000UTC and 1200UTC. NUCAPS version 2 data 

calculated from Suomi-NPP can be obtained from 

NOAA’s Comprehensive Large Array-data 

Stewardship System (CLASS) website 

(www.bou.class.noaa.gov). As a preliminary 

evaluation of calculating TTS using NUCAPS 

sounding data, the time period of September 2018 

to March 2020 was used.  

 

2.6 ‘Vertical wind profile’ dataset 

from wind profiler radar 
Meteorological Service Singapore has a wind 

profiler radar system located at the Changi Climate 

station. The wind profiler provides real time vertical 

wind information up to altitudes of 23,000 feet 

https://systatsoftware.com/products/sigmaplot/sp-overview/
https://systatsoftware.com/products/sigmaplot/sp-overview/
http://www.bou.class.noaa.gov/
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depending on output power and atmospheric 

conditions. NUCAPS data does not contain vertical 

wind information, and requires supplementary 

wind information from the wind profiler in order to 

mimic the parameters measured by a radiosonde 

and which are required in the TTS calculation. The 

wind profiler dataset was extracted to match the 

NUCAPS dataset’s time period and retrieval timing.  

 

2.7 Modification to NUCAPS 

Sounding 
The quality of the NUCAPS data depends heavily on 

local weather and cloud conditions. NUCAPS 

retrieval of atmospheric conditions fails when there 

is no radiative pathway past clouds, and hence 

performs poorly in overcast or precipitating cloudy 

conditions. Therefore, data is excluded if there is 

rainfall over Singapore within the hour prior to the 

NUCAPS retrieval timing. Secondly, due to the top 

of atmosphere measurement of satellite 

observations, NUCAPS derived temperature and 

moisture profiles tend to exhibit higher uncertainty 

and lower sensitivity to conditions in the boundary 

layer. Comparison between surface temperature 

observations at the Changi Climate Station against 

the temperatures derived by NUCAPS shows that 

NUCAPS has an average bias of -2 degrees Celsius, 

indicating that NUCAPS tends to underestimate 

temperatures near the surface. Subjective visual 

analysis into the sounding plots further reveal a 

temperature inversion below 1000 mb as a 

recurring feature. Singapore typically experiences 

strong solar heating in the day and would typically 

erode any near surface inversion layer. As a result 

of the observations above, data in the boundary 

layer data below 1000 mb was removed, and 

replaced with observed surface temperature, dew 

point and pressure measurements from our Changi 

Climate Station where the wind profiler is located 

as well. The combination of NUCAPS data and 

surface observations allows for more accurate 

computation of various thermodynamic 

parameters that rely heavily on lower level 

observations. Figure 3 shows an example of an 

unmodified NUCAPS sounding on the left and the 

corresponding sounding after modification on the 

right. Lastly, the vertical wind profile extracted from 

the wind profiler data was combined with the 

NUCAPS sounding. A total of 175 modified NUCAPS 

data points were extracted for this study. The 

modified NUCAPS sounding was then processed 

using the same TTS methodology as outlined above. 

3 RESULTS AND DISCUSSION 
No single individual thermodynamic parameter or 

severe weather predictor can represent the 

extremity of precipitation. If a heavy precipitation 

event occurs, a confluence of various heavy rain 

predictors must be present and factor together in 

an accumulating manner. The curated list of heavy 

rain predictors (passing the ‘increasing slope of 

percentage of heavy rain occurrence from lowest to 

highest index’ test in the stacked bar chart analysis) 

(a) Unmodified NUCAPS sounding  (b) Corresponding sounding after modification 

Figure 3: Example of NUCAPS Skew-T plots, before and after modification 
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for each of the three seasons is shown in Table 1. 

There are ten heavy rain predictors common to all 

three seasons. Please refer to the glossary for a 

detailed description of all the heavy rain predictors. 

In general, based on forecasting experience, a low  

steering-level wind speed (a slow-moving 

thunderstorm) coupled with high precipitable 

water (deep and moist atmospheric conditions) will 

have a higher chance of causing a localised heavy 

rain event as compared to fast-moving, passing 

showers. These two parameters (steering-level 

wind speed and precipitable water) are 

unsurprisingly good heavy rain predictors for all 

times of the year. Let us now turn our attention to 

the 700-500 (mid-level) lapse rate which is a good 

heavy rain predictor during the Southwest 

Monsoon only (Table 1 and Figure 4). For this lapse 

rate predictor, it appears counter-intuitively that a 

more stable mid-level lapse rate is more likely to 

predict a heavy rain event than an unstable mid-

level atmosphere. Late morning and early 

afternoon thunderstorms are common during the 

Southwest Monsoon. A stable mid-level lapse rate 

may act as a capping inversion to delay/suppress 

convective activity until later in the day and allow 

for a larger build-up of low-level moisture/updrafts, 

resulting in more explosive thunderstorm 

development once the cap is broken. More in depth 

discussion of the physical processes/relationships 

for all other heavy rain predictors is beyond the 

Inter-Monsoons Northeast Monsoon Southwest Monsoon 

Steering-level Wind Speed (900hPa to 700hPa) 

Precipitable Water 

K-Index 

Shear Speed (surface to 700hPa) 

Mean-mixing Ratio (surface to 950hPa) 

Relative Humidity (surface to 750hPa) 

Wet-Bulb Zero Height 

Jefferson Index 

Mid-level Dry Slot X Mid-level Wind Speed (7000 to 20,000ft) 

Dry Slot (surface – 7000ft) 

Cross Totals Cross Totals 700-500 Lapse Rate 

 CAPE (most unstable) CAPE (most unstable) 

 Lifted index Vorticity Generation Parameter 

Table 1: The list of heavy rain predictors identified for each season. Predictors common to all three seasons 

are in the first ten rows. 

(a) Inter-Monsoons (b) Northeast Monsoon (c) Southwest Monsoon 

Figure 4: Best-fit logistic curves (black line) for each of the three seasons. 
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scope of this letter but can be investigated in future 

attribution studies. 

The unification of heavy rain predictors (with equal 

weighting and calibrated with individual seasons’ 

climatological chance of heavy rain) into a TTS 

enables a quick and objective assessment of the 

chance of heavy rain based on a single number. 

Logistic curve-fitting of raw TTS against chance of 

heavy rain (%) for each of the three seasons is 

shown in Figure 4. The higher the TTS value, the 

higher the likelihood of a heavy rain occurrence on 

that day. The TTS logistic curve (black lines, Figure 

4) can be used to estimate the likelihood of a heavy 

rain event for each day against the climatological 

chance of heavy rain for that season. For example, 

the TTS for the climatological chance for inter-

monsoon (20%), Northeast Monsoon (16%) and 

Southwest Monsoon (12%) seasons are 75, 80 and 

74 respectively. If the TTS for a day in the inter-

monsoon season is 90, it corresponds to a 45% 

chance of heavy rain occurrence (twice as likely as 

the normal 20%). Thus, during the inter-monsoon 

season, we could confidently issue a heavy rain 

warning earlier with a longer lead time of more than 

30 minutes when the TTS is greater than 90 and the 

3G wind vectors show persistent localised 

convergence on that day. Future research work 

could involve a dimension reduction analysis (e.g. 

Principal Component Analysis) so as to determine 

 Heavy Rain Events Non-heavy Rain Events 

Radiosonde TTS 

NUCAPS 

TTS Radiosonde TTS 

NUCAPS 

TTS 

Average 73.6 82.2 62.8 65.6 

SD 13.9 21.2 17.4 18.8 

Table 2: Average and Standard Deviation of morning radiosonde TTS and afternoon NUCAPS for heavy and 
non-heavy rain events. 

Figure 5: NUCAPS TTS against percentage chance of heavy rain events. 
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which heavy rain predictor is more correlated and 

to give each predictor an appropriate weight 

instead of applying an equal weight for all heavy 

rain predictors. 

In addition to TTS calculated from traditional 

weather balloon soundings, the NUCAPS TTS was 

calculated for a dataset of 175 data points between 

September 2018 and March 2020. Out of these 175 

data points, there were 12 heavy rain events. The 

NUCAPS TTS for heavy rain events (M = 82.2, SD = 

13.9) compared to the NUCAPS TTS for non-heavy 

rain events (M = 65.4, SD = 17.7) was significantly 

higher, t(14) = 2.1, p = 0.001.  The smaller dataset 

rendered seasonal analysis ineffective. Instead, 

NUCAPS TTS for all seasons were categorized into 

bins of 10, and the percentage of heavy rain events 

that occurred in each bin were plotted in order to 

examine the general trend. Figure 5 shows an 

increasing trend in heavy rain events as TTS 

increases. The sharp increase in percentage of 

heavy rain events to 100% when the NUCAPS TTS 

exceeded 90 might not be statistically significant as 

there were only 5 data points. When more data 

points become available over time, further 

evaluation will be conducted.  

The morning radiosonde TTS and the afternoon 

NUCAPS TTS for the same dates were compared for 

heavy and non-heavy rain events. Table 2 shows 

that for non-heavy rain events, the average TTS 

values were largely similar with a mean increase of 

2.8. In contrast, there was a mean increase of 8.6 

for days with heavy rain events. Most of these 

heavy rain events occurred between 0800UTC and 

1100UTC (4pm to 7pm Local Time) and the results 

suggest that as atmospheric conditions developed 

throughout the day, NUCAPS TTS managed to 

capture the elevated threat in the afternoon for 

days with heavy rain events. These results tally, on 

average, with another verification of morning TTS 

skill scores that was done for heavy rain events 

from 2013 to 2016 (results not shown here) where 

a morning TTS filter of 80 was not able to capture 

some of the heavy rain events happening after 2pm 

local time, indicating that the atmospheric 

conditions may have deteriorated since the release 

of the morning soundings.  

3.1 Operationalisation of the TTS 

tool 
A web-based TTS tool was operationalised in 

November 2014. The program automatically 

retrieves daily sounding data and passes it to RAOB 

for the processing of the sounding and generation 

of a list of thermodynamic parameters and severe 

weather indices. Then, using the pre-defined 

predictor list of heavy-rain events (Table 1) for each 

of the three seasons (inter-monsoons, Northeast 

Monsoon and Southwest Monsoon), a ‘Threat 

Score’ is computed for each predictor and a ‘Total 

Threat Score’ for the sounding. The results are 

output as a .csv and presented in a more user-

friendly web-based format before 9am LT daily. 
 

Operational forecasters can access the web-based 

TTS tool (Figure 6) after 9am LT daily. A 5-day trend 

of daily TTS is displayed on the top row for the 

evaluation of general weather conditions over the 

last few days. Next, detailed information regarding 

very low, low, moderate, high, and very high severe 

thresholds for each heavy rain predictor is provided 

as a reference for the user. Specific values derived 

from the current sounding (10 September 2020 in 

this case) are then used to compute the individual 

heavy rain predictors’ threat level. Forecasters can 

assess each predictor’s threat level separately 

based on their level of understanding, or just use 

the TTS directly. The TTS on 10 September 2020 is 

81 (corresponding to a 17% chance of heavy rain 

event occurrence), indicating a slightly elevated risk 

of heavy rain event occurrence as compared to the 

climatological chance of 12%. As a precaution, 

forecasters should take note of a possible artificially 

high TTS whenever there is shower or 

thunderstorm activity in the UAO vicinity in the 

early morning, and apply appropriate judgement 

during the heavy rain warning issuance decision 

process. Efforts are also currently underway to 

operationalise the afternoon NUCAPS’ TTS, as an 

upgrade of the morning TTS tool.  
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4 CONCLUSION 

The TTS tool is a locally tuned tool to predict the 

probability of heavy rain events using a 22-year 

climatological database from the 0000 UTC (8am 

LT) radiosonde soundings. A proper selection of 

thermodynamic parameters and severe weather 

indices can improve the forecaster’s ability to 

identify days with a ‘heavy rain event’ threat, 

through a more objective assessment of the daily 

total threat scores (TTS). The development of 

NUCAPS soundings further empowers the 

forecasters’ ability to track changes in heavy rain 

threat across the day. This guidance tool aims to 

Figure 6: Screenshot of the web-based TTS tool (for Southwest Monsoon) taken on 10 September 2020, close 
to 6 years of operation. On this day, the computed TTS is 81, with a ‘95% prediction’ band of 2% - 36% chance 
of heavy rain event occurrence. The climatological chance of heavy rain event during the Southwest Monsoon 
is 12% (reference period 1991 to 2012). 
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increase forecasters’ confidence in issuing a heavy 

rain warning earlier with a lead time of 30-45 

minutes before any flash flood occurrence if the TTS 

score is high for that day. However, this tool only 

indicates if the general conditions are conducive to 

severe weather events. The actual location and 

timing of the heavy rain events will be influenced 

strongly by low-level boundary interactions, such as 

sea breeze fronts and meso-scale convergence. To 

address these challenging location-specific and 

actual timing issues of a heavy rain event, MSS’ 

operational SINGV-DA based on the Met Office 

Unified Model (convective-scale numerical weather 

prediction system developed in-house specifically 

for Singapore and the surrounding region) would be 

a better/more timely heavy rain warning forecast 

solution, especially with continued model 

developments and improvements. In turn, the 

SINGV-DA prediction system can generate these 

model-based heavy rain event predictors, and serve 

as a diagnostic comparison with the observation 

values derived from radiosonde or satellite 

soundings.  

Future work may involve the launching of 

experimental afternoon radiosonde soundings to 

calibrate and ground-truth the satellite-derived 

soundings. The main advantages of satellite-

derived soundings are the spatial and temporal 

resolution of the product over a single radiosonde 

point and if done properly, the corrected satellite-

derived sounding information can be assimilated 

into a radar-based extrapolation/SingV-DA 

Quantitation Precipitation Forecast (QPF) for a 

more accurate, timely and location-specific 

operational heavy rain warning system. 
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ABSTRACT 
This study investigates active (wet) and break (dry) spells 

or cycles of precipitation in the observation (uses 

multiple data sources for analysis; both in situ and 

satellite merged products) within a season: with a focus 

on both monsoon Seasons (SW & NE) and inter-monsoon 

seasons (IM1 & IM2). The wet and dry spells are further 

divided into short and long spells. The trends of short 

and long dry and wet spells are studied with available 

length of multiple datasets and further the impact of El 

Nino and La Nina conditions on the wet and dry spells are 

elucidated with the available datasets. Although, we 

noticed a decreasing trend of wet spells and an 

increasing trend of dry spells, the results were not 

significant due to the small number of years of 

observational data.  

1 INTRODUCTION 
Singapore and the Malay peninsula experience a wet 

tropical climate, which supports evergreen forest and 

large human habitations. Prolonged periods of dry 

(break) or wet (active) conditions affect the flora and 

fauna and people of this region. A huge urban population 

resides in this region and relies on the monsoon seasons 

to provide water for day-to-day activities (Fong, 2012). 

Prolonged torrential rains and drought can lead to 

disruption in the economy of the region and its trade 

partners.   

This study identifies the characteristics of dry and wet 

spells within each monsoon season, using the following 

observed in-situ and space-based rainfall products 

(Cheong et. al, 2018): the Aphrodite (gauge observed) 

precipitation product, CHIRPS (gauge + infra-red (IR) 

merged) and TRMM 3B42 Satellite (microwave + infra-

red (IR) sensors). Documenting dry and wet cycles from 

multi-decades of observations will help in the 

understanding of the variability of wet and dry cycles 

occurring within a season over the Singapore and Malay 

Peninsula region, thereby reinforcing results from similar 

studies over South Asia (Prasanna, 2016).  

This work investigates active (wet) and break (dry) cycles 

of precipitation in the observation (data analysis) within 

each monsoon season, with a focus on both the 

Southwest (SW) and Northeast (NE) monsoon seasons 

and the two inter-monsoon seasons (IM1 & IM2). The 

four seasons are identified using previous studies of 

weather regime over Singapore and the Malaysian 

peninsula (He, 2018; Hassim and Timbal, 2019). 

2 DATA AND METHOD 
Three gridded precipitation datasets were used to 

identify wet and dry spells. The Asian Precipitation-

Highly-Resolved Observational Data Integration Towards 

Evaluation of Extreme Events (APHRODITE-2) provides 

daily grid precipitation data over the Asian land region, 

with a high spatial resolution of 0.25° x 0.25°, based on 

observational rainfall data. APHRODITE-2 applies a time 

adjustment in order to resolve conflicting “End-of-Day” 

measurements, an improvement over its predecessor, 

APHRODITE (Yatagai et al., 2012). APHRODITE-2 v1901 

was released in 2019. Climate Hazards Group InfraRed 

Precipitation V2.0 (CHIRPS) is a high-resolution gridded 

precipitation dataset which is available at a daily time 

scale, with a spatial resolution of 0.05° x 0.05° (Funk et 

al., 2015). CHIRPS is built upon a global 0.05° 

precipitation climatology and incorporates gridded 

precipitation estimates from cold-cloud estimates, 

station data and satellite measurements from 1981-

present. The Tropical Rainfall Measuring Mission 

(TRMM) precipitation product was designed to measure 

precipitation in the tropics (Huffman et al., 2007). TRMM 

3B42 with a spatial resolution of 0.25° x 0.25° provides a 

3-hourly accumulated precipitation product, measured 

using satellite sensors (Infra red [IR] + TRMM microwave 

imager [TMI] + Precipitation radar [PR]) and is adjusted 

or bias corrected to the monthly gauge observation 

rainfall totals. TRMM 3B42 V7 has been recording data 

since December 1997. 
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Precipitation data from 28 meteorological stations in 

Singapore was spatially averaged over pre-determined 

domains (see below) to obtain a domain-averaged 

precipitation time series for the years 1998-2015.  

We defined three regions for study as follows: 

1) Maritime Continent region (D1): latitude 90°E – 

130°E, longitude 10°S – 10°N 

2) Indonesia-Malaysia region (D2): latitude 96°E – 

108°E, longitude 4°S – 7°N 

3) Singapore region (D3):  latitude 103.5°E – 

104.1°E, longitude 1.2°N – 1.5°N 

The data was partitioned into 4 seasons based on the 

climatological onset and demise outlined in He (2018):  

1) Northeast Monsoon: 5th December - 8th April 

2) Inter Monsoon 1:  9th April - 12th June 

3) Southwest Monsoon: 13th June - 19th October 

4) Inter Monsoon 2: 20th October - 4th December  

In order to determine the robustness of Aphrodite-2, 

CHIRPS and TRMM datasets when compared with each 

other, we inter-compared various statistics (correlation, 

seasonal mean, standard deviation) of the seasonal 

rainfall climatology obtained from each dataset for each 

season. Data between the years 1998-2015 in Aphrodite-

2, CHIRPS and TRMM were selected for the inter-

comparison. This time period was chosen since the 

TRMM dataset is only available from December 1997 

onwards.  

The daily spatially-averaged precipitation over land was 

first calculated from each of the datasets, for the 

Singapore region (D3) and the Indonesia-Malaysia region 

(D2). As the TRMM dataset provides precipitation data 

over both land and ocean, the dataset was first masked 

using a land-sea mask and only land points in the TRMM 

dataset were considered in the following calculations. 

No such land-sea mask was required for Aphrodite-2 and 

CHIRPS since they provide precipitation over land 

masses only. The Pearson’s correlation coefficient was 

then calculated to determine the correlation between 

the spatial averages from the Singapore region and the 

Indonesia-Malaysia region (Figure 1). Note that in the 

seasonal correlation analysis, the daily spatially averaged 

precipitation for each day within each season were first 

added together. In order to observe the variability of the 

precipitation within the Indonesia-Malaysia region and 

to find out which region within the D2 box contributed 

to its overall variability, the spatial average was 

correlated spatially with the rainfall at each grid point in 

D2 using the same data sources (Figure not shown). The 

correlation coefficients between the averaged 

precipitation computed from 28 Singapore rain gauge 

observations and the D1 spatial precipitation average 

from Aphrodite, CHIRPS and TRMM for the years 1998 – 

2015 were also calculated (Figure 2). 

For D2, we further computed the standardised 

precipitation anomaly, expressed as the difference 

between the domain averaged daily (land) precipitation 

and the climatological daily precipitation mean averaged 

over the years 1998-2015, divided by the standard 

deviation of the time series from 1998-2015. 

The data was categorized into 4 categories: Short wet 

spells, long wet spells, short dry spells and long wet 

spells.  

Figure 1: Barplots displaying correlation of daily spatial precipitation mean (left), seasonal spatial precipitation mean (right) between 

Singapore and the Indonesia-Malaysia region for each precipitation product for individual seasons 
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1) Short wet spells: exactly 3 consecutive days 

where the standardised precipitation anomaly 

> 0.5 SD.                   

2) Long wet spells: ≥ 7 consecutive days where the 

standardised precipitation anomaly > 0.5 SD.  

3) Short dry spells: 3 consecutive days where the 

standardised precipitation anomaly < - 0.5 SD. 

4) Long dry spells: ≥ 7 consecutive days where the 

standardised precipitation anomaly < - 0.5 SD.                                           

The CHIRPS dataset which, with data spanning the years 

1981-2017, was the longest dataset available to us, was 

used for obtaining longer term trends. CHIRPS 

precipitation data was used for selecting 8 El-Niño years 

(1982, 1986, 1991, 1994, 1997, 2002, 2009, 2015) and 8 

La Niña years (1984, 1988, 1995, 1998, 2008, 2010, 2011, 

2016), as outlined by Turkington et. al (2018). Wet and 

dry spells, both short and long, were classified by 

applying the same conditions above. 

3 RESULTS AND DISCUSSION 
The correlations between the daily spatial average 

precipitation of the Indonesia-Malaysia region and the 

Singapore region were low for all three datasets (0.37-

0.57; Figure 1). This correlation improved across all 

seasons when the seasonal averages were used, the only 

exception being the seasonal correlation obtained using 

the TRMM dataset in IM2 (0.24) and to a lesser degree 

the correlation computed using the Aphrodite dataset in 

IM1 (0.46). Hence, utilizing the spatially averaged 

precipitation over the Indonesia-Malaysia region as a 

precipitation index may represent the variability of the 

precipitation over Singapore reasonably well on a 

seasonal time scale (0.24-0.86) but not on a daily time 

scale (Figure 1). 

On a daily timescale, the precipitation index produced 

from spatially averaging the rainfall in the Indonesia-

Malaysia region using Aphrodite, CHIRPS and TRMM 

showed poor correlations with the spatial average 

obtained from the precipitation time series obtained 

from averaging rain gauge measurements from 28 

meteorological stations in Singapore. For the 

correlations of seasonal means, correlations exceeded 

0.5 for all monsoon seasons in all datasets (0.53-0.95). 

Correlation for daily means only exceeds 0.5 in the NE 

monsoon (0.75). On a seasonal timescale, spatially 

averaging either Aphrodite, CHIRPS or TRMM 

represented the observed variability of the precipitation 

over Singapore well, but the data failed to capture the 

precipitation variability on a daily time scale, except 

during the NE Monsoon across the three datasets (0.11-

0.75; Figure 2).  

While the spatial distribution of precipitation remained 

similar among the three datasets, the Aphrodite data 

captured smaller amounts of rainfall in all regions 

compared to CHIRPS and TRMM (Figure 3). Consistent 

with the area averaged mean daily precipitation per 

season over the D1, D2 and D3 domains, the Indo-

Malaysia region (i.e D2 domain) experienced the highest 

mean daily precipitation in IM2 (Figure 4). 

Figure 2: Barplots displaying correlation of daily spatial precipitation mean (left), seasonal spatial precipitation mean (right) 

between each precipitation product and the daily mean precipitation calculated from gauge data in Singapore for individual 

monsoon seasons. 
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Mean daily precipitation differed from season to season, 

with IM2 showing the highest mean daily precipitation, 

and SW showing the lowest mean daily precipitation 

across all the three data sets over the D2 domain (Figure 

4). Mean daily precipitation did not differ much between 

CHIRPS and TRMM for all seasons, while Aphrodite gave 

consistently lower mean daily precipitation compared to 

CHIRPS and TRMM for all seasons. The magnitudes of the 

standard deviation were similar across data sets on a 

seasonal timescale. 

From Figure 5, we note that there were fewer wet spells 

than dry spells, whether short or long, in the Indonesia-

Malaysia region from 1998 to 2015. The ratio of long 

spells to short spells was higher for dry spells than wet 

spells. Generally, the three data sets agreed in the 

number of short and long spells across the seasons, with 

some exceptions. CHIRPS reported twice the number of 

long wet spells (25) compared to Aphrodite (12) and 

TRMM (11) during the NE monsoon and reported a 

different number of long dry spells during IM1 and IM2 

(30 and 10), being noticeably lesser than both Aphrodite 

(62 and 34) and TRMM (62 and 20) during long dry spells. 

Figure 5 shows the differences among the datasets for 

short and long wet and dry spells for each season. In 

order to analyse the long-term trend of wet and dry 

spells in the Indonesia-Malaysia region, we further 

extended the time series to the years 1981-2017 using 

Figure 3: Climatological mean daily precipitation for individual monsoon seasons computed from Aphrodite, CHIRPS and TRMM 

3B42. Refer to the main text for the definition of the seasons. The climatology was computed using data between 1998 – 2015. 

Figure 4: Mean daily precipitation and standard deviation per 

season obtained from each precipitation product for the D2 

domain. 
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the CHIRPS data set (Figure 6). Anomalies were 

calculated from the new climatology spanning 1981-

2017, and dry and wet spells, both short and long, were 

classified similarly using the same method employed for 

determining dry and wet spells, as described in the “Data 

and Methods” section. 

Between 1981 – 2017, we noted that there were more 

short wet spells (48, 18, 51 and 19) in La-Niña phase 

Figure 5: Bar charts showing the number of short and long wet spells (left) and the number of short and long dry spells (right) 

from 1998 to 2015, for individual seasons and using different precipitation products computed for the D2 domain. 

Figure 6: Number of wet and dry spells from 1981 to 2017 calculated using CHIRPS, for (a) all years, (b) El-Niño phase years only, 

(c) La-Niña phase years only computed for the D2 domain. 
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years (figure 6c) compared to El-Niño phase years (39, 

18, 23 and 12) (figure 6b) across all seasons, except for 

IM1 which showed an equal number of short wet spells 

for both El-Niño and La-Niña years. However, there were 

more long wet spells in El-Niño years for the NE monsoon 

(11) and IM1 (4), while there were more long wet spells 

in La-Niña years for the SW monsoon (11) and IM2 (3).  

There were more dry spells during El-Niño years than in 

La-Niña years, whether short or long. The number of dry 

spells, both short (127) and long (96), was highest during 

El-Niño years in the SW monsoon season. There were 

more wet spells, whether short (51) or long (11) than dry 

spells (37, 5) during La-Niña years in the SW monsoon. 

During the NE monsoon there were more dry spells (59, 

20) compared to wet spells (48, 7) during La-Niña years. 

Both IM1 and IM2 showed fewer wet spells (18, 0 and 

19, 3), whether short or long, as well as fewer dry spells 

(34, 11 and 9, 1) during La-Niña years compared to the 

SW and NE monsoon seasons. The wet spells reduced 

from 191, 46 for all years to 23, 1 during El-Niño years in 

the SW monsoon. Similarly, dry spells in the Inter 

monsoon, particularly for IM2, reduced from 96, 8 for all 

years to 9, 1 during La-Niña years. Therefore, the SW 

monsoon and Inter monsoon seasons were the most 

affected by the El-Niño and La-Niña phases.  

Apart from computing the number of long and short wet 

and dry spells for the four seasons (NE, IM1, SW and 

IM2), we also analysed their year-to-year variability for 

four seasons for the two different periods (1998-2015 

using all 3 datasets, 1981-2017 using CHIRPS only). The 

following is a summary of the results for 1998 – 2015: 

Although it seems that the number of long dry spells was 

increasing during the NE monsoon (p=0.22) and the SW 

monsoon (p=0.79), this increase was statistically 

insignificant. The number of long wet spells in the NE 

monsoon appeared to be increasing (p=0.081). The 

number of dry spells appeared to have been decreasing 

during IM1 (p = 0.04) and IM2 (p=0.014), from the mean 

of the three datasets (APHRODITE, CHIRPS and TRMM; 

Figure 7). However, as the trend was not obvious, we 

also cannot reliably conclude from these 18 years of data 

that there has been an increase in the number of short 

dry spell events; a longer data period must be used to 

determine the trend in the spells over the years. Except 

for the long dry spells in the NE and SW monsoons in 

2015 and the long dry spells during the inter-monsoons 

in 1998 and 1999, there is little variability in the number 

of dry and wet spells among the three datasets 

(Aphrodite, CHIRPS and TRMM).  This low variability in 

terms of dry or wet spells identified each year suggests 

that the three data sets are reliable when compared with 

one another and may be a good estimate of the 

precipitation data over the Indonesia-Malaysia region.  

The results from similar analyses using the CHIRPS 

precipitation data over the longer period of 37 years 

from 1981- 2017 are presented in Figure 8, where we 

observed the following: 1)The trend of wet spells and dry 

spells (both long and short) seemed to be less obvious; 

2) The dry (wet) spell peaks coincided with El-Niño (La-

Niña) phase; 3) There was a slight decreasing trend in 

short dry spells and increasing trend in short wet spells 

during all seasons except IM1; 4) There appeared to be a 

slight increasing trend in short wet spells (p=0.017) and 

long wet spells (p=0.0091). We also discerned 

statistically significant trends in the number of spells in 

IM1 and IM2, but this trend was much smaller than the 

increase in trend in short wet spells during the NE 

monsoon. Although we see slight increasing or 

decreasing trends, these are not very obvious and the 

data period used is also very short. Therefore, a longer 

data period and more rigorous significant testing is 

needed to identify if there are any trends in wet/dry 

spells during different seasons. 

Spell intensity was calculated by taking the accumulated 

anomaly rainfall during a spell, divided by the number of 

days in the spell. Although there were more dry than wet 

spell events, the intensities of dry and wet spells are not 

equal. Wet spells in the SW monsoon were more intense 

than dry spells, with a higher absolute mean standard 

anomaly per spell, for both short and long spells. We 

noticed an increasing trend in the intensity of long wet 

spells (p = 0.11) and a decreasing trend in long dry spells 

(p = 0.09) from 1981 to 2017 in the NE monsoon. This 

trend also appears in the SW monsoon, where there may 

be an increasing trend in the intensity of long wet spells 

(p = 0.13) and a decreasing trend in the intensity of long 

dry spells (p=0.19). 
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There appears to be a decreasing trend in the intensity 

of long wet spells in IM1 (p=0.93) and IM2 (p=0.31) and 

an increasing trend in the intensity of long dry spells in 

both IM1 (p = 0.79) and IM2 (p = 0.70) (Figure 9), which 

are statistically insignificant. In fact, the trends shown in 

each season do not appear to be significant. Due to the 

smaller number of long wet and dry spells from 1981 to 

2017, more data needs to be analysed to determine the 

long-term trend in wet and dry spells. By classifying the 

spells into La-Niña, El-Niño and Neutral years only, we 

observed a statistically significant decreasing trend in 

the intensity of short dry spells over the 8 La-Niña years 

(p = 0.07). This was the only statistically significant trend 

obtained over all the monsoon seasons. 

Figure 7: Temporal distribution of number of short (left) and long (right) wet and dry spell events per season from 1998-

2015 over the Indonesia-Malaysia region (D2). The dashed lines are the linear regression for the dry spells (red) and wet 

spells (blue). Each data point represents the average of the APHRODITE, CHIRPS and TRMM. The bars denote the lower 

and upper ranges from the three different datasets.  
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For the wet and dry spells in the Indonesian-Malaysian 

region from 1981 to 2017 using CHIRPS data, dry spells 

were greater in number during El-Niño years compared 

to La-Niña years for all seasons, whether short or long. 

Short wet spells were greater in number during La-Niña 

years compared to El-Niño years for all seasons except 

for the SW monsoon where short wet spells were equal 

in number in El-Niño and La-Niña years. Long wet spells 

in the neutral phase of the ENSO showed the strongest 

absolute precipitation anomaly, across all four monsoon 

seasons (Figure 10). 

 

 

 

Figure 8: Temporal distribution of the number of short (left) and long (right) wet and dry spell events per season from 1981-2017 

computed for the D2 domain. Red stars denote El Niño Years, blue stars denote La Niña Years. Dashed red lines denote dry spell 

linear regression and dashed blue lines denote wet spell linear regression. 
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4 CONCLUSION 
This study used multiple datasets over the maritime 

continent and compared the datasets for seasonal and 

daily means and variability. Although the precipitation 

from these three products (APHRODITE, CHIRPS and 

TRMM) have similar large scale patterns within the 

Indonesia-Malaysia region, they do differ in daily mean 

and standard deviation for each season. 

The study also brought out the differences among the 

datasets in capturing the precipitation variabilities and 

the active (wet) and break (dry) cycles within each 

season. Wet and dry spells during the different monsoon 

seasons in the Indonesia-Malaysia region have been 

characterised using three precipitation products, 

APHRODITE, CHIRPS and TRMM.  

We compared the representation of each dataset for 

short and long dry and wet spells for each season and 

Figure 9: Temporal distribution of mean daily wet and dry spell intensity per season from 1981-2017 computed for the D2 

domain. Spell intensities are plotted for each year, and they are classified into El-Niño, La-Niña and Neutral years represented 

by different coloured dots. 
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their inter-annual variability for the available data period 

over the Indonesia-Malaysia region. We also compared 

the characteristics of short and long dry and wet spells 

during ENSO years. We found that during El Niño years, 

the dry spells were more pronounced during the SW 

monsoon season compared to other monsoon seasons. 

Although there were generally fewer wet spell events 

than dry spell events over the Indonesia-Malaysia region 

during 1981-2017, wet spells appeared to be more 

intense than dry spells. 

ENSO had differing impacts on the number and intensity 

of wet spells and dry spells for each monsoon season. 

The ratio of wet spells to dry spells differed most during 

the SW monsoon and IM2 during El-Niño years 

compared to La-Niña years. The mean daily intensity of 

wet and dry spells was also affected by the ENSO phases.  

There were limitations in this study. The active and break 

spells were identified using a threshold of +/- 0.5 daily 

standard deviation for wet and dry cycles, and the spells 

were defined as having a duration of 3 days for short 

spells and greater than or equal to 7 days for long spells. 

We performed sensitivity tests to the thresholds before 

fixing these thresholds, as we know that the assumption 

of normal distribution of rainfall introduces uncertainty 

in defining the active and break phases. The method is 

simple but effective in characterising the active break 

cycle over this region. 

More research needs to be done on the trends in the 

frequency and number of wet and dry spells in recent 

years, and further studies could focus on the effect of 

ENSO on the monsoon seasons using the onset and 

demise dates of ENSO phases or the developing and 

decay phases of ENSO, rather than using the ENSO phase 

for the entire year as used in this study. 
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GLOSSARY* 
 

APHRODITE-2 (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation -2): a set of 

long-term (1951 onward) continental-scale daily products that is based on a dense network of rain-gauge data for Asia 

including the Himalayas, South and Southeast Asia and mountainous areas in the Middle East. 

BASE: A series of nested chemistry transport models for air quality simulation.  

CAPE (most unstable): Most Unstable Convective Available Potential Energy (MUCAPE, J/kg) represents the total 

amount of potential energy available to the most unstable parcel of air found within the lowest 300hPa of the 

atmosphere while being lifted to its level of free convection (LFC). The CAPE calculation uses the virtual temperature 

correction. 

Climate Hazards Group InfraRed Precipitation V2.0 (CHIRPS): a high-resolution gridded precipitation dataset which is 

available at a daily time scale, with a spatial resolution of 0.05° x 0.05°. It is built upon a global 0.05° precipitation 

climatology and incorporates gridded precipitation estimates from cold-cloud estimates, station data and satellite 

measurements from 1981-present. 

CMAQ (Community Multi-scale Air Quality): an active open-source development project of the U.S. Environmental 

Protection Agency that consists of a suite of programs for conducting air quality model simulations. CMAQ combines 

current knowledge in atmospheric science and air quality modeling, multi-processor computing techniques, and an 

open-source framework to deliver fast, technically sound estimates of ozone, particulates, toxics and acid deposition. 

Cross Totals (CT): The CT index is commonly used as a severe weather indicator and is based on temperature and 

moisture data. CT = Td850 - T500 

 

Dry Slot (surface – 7000ft): A low-level dry air layer (RH <= 50%) from the surface to ~2km Above Ground Level (AGL) 

may suppress or delay convective activity. The presence of a low-level dry slot is quite rare in tropical regions and 

typically occurs in synoptic scale. 

 

Jefferson Index: The Jefferson index (JI) is a stability index, tested and used in maritime areas. JI = 1.6 x WBPT850 - T500 - 

0.5 x dew-point_depression700 – 8, where: WBPT is wet-bulb potential temperature. 

 

K-Index (KI): The KI is a function of 850hPa, 700hPa and 500hPa temperature and moisture information (Hart & Korotky, 

91). KI = T850 + Td850 - T700 + Td700 - T500 

 

Lifted index (LI): The LI is calculated as the difference between the observed temperature at 500hPa and the 

temperature of an air parcel lifted to 500hPa from low-level Lifted Condensation Level (LCL). The low-level LCL is found 

by using the mean moisture content in the lower 1km. The more unstable the environment, the more negative the LI. 

 

Mean-mixing Ratio (surface to 950hPa): This mean-mixing ratio (MMR) is defined as the ratio of the mass of water 

vapour to the mass of dry air (in g/kg) averaged from the surface level to 500m AGL. 

 

MEGAN (Model of Emissions of Gases and Aerosols from Nature) version 2: a modelling system for estimating the net 

emission of gases and aerosols from terrestrial ecosystems into the atmosphere, used here for biogenic emissions 

estimation. 

 

Mid-level Dry Slot x Mid-level Wind Speed: A deep mid-level dry air incursion (RH <= 50%) when combined with strong 

mid-level winds from ~2km to ~6.5km AGL may suppress deep convection totally due to dry air entrainment and 

shearing of growing clouds. 

 

NOFIRE: A set of air quality simulation without biomass burning emissions. 
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Precipitable Water: This is the total precipitable water of the entire column of air represented by the plotted sounding 

and represents a vertical integration of mean mixing ratios. 

 

Relative Humidity (surface to 750hPa): Relative humidity (Mean RH, in %) is a measure of the actual amount of water 

vapour in the air compared to the total amount of vapour that can exist in the air at its current temperature and 

pressure. This parameter is averaged from the surface level to 2.5km AGL.2 

 

Shear Speed (surface to 700hPa): The shear speed (surface to 700hPa) represents the vector difference between the 

winds (in knots) at the surface level and 3km AGL. 

 

Steering-level wind speed (900hPa to 700hPa): The steering-level wind speed (Storm speed) is the average-layer wind 

speed (in knots) from 1km to 3km above ground level (AGL). This 1-3km layer typically represents the bulk movement 

of thunderstorms in the tropics. 

 

Tropical Rainfall Measuring Mission (TRMM): a precipitation product designed to measure precipitation in the tropics. 

TRMM 3B42 with a spatial resolution of 0.25° x 0.25° provides a 3-hourly accumulated precipitation product, measured 

using satellite sensors. 

 

Vorticity Generation Parameter (VGP): The VGP is the rate at which horizontal vorticity is converted to vertical vorticity 

through tilting. 

 

Wet-Bulb Zero (WBZ) Height: WBZ height is the height (in feet) where the wet-bulb profile transitions from a positive 

to a negative temperature. It is commonly used as one of many factors in estimating hail size and severe weather 

potential. 

 

World Meteorological Organisation (WMO): An agency under the United Nations for meteorology (both weather and 

climate), as well as operational hydrological services. 

 

700-500 Lapse Rate: The 700-500 lapse rate (°C/km) is the temperature difference between 700hPa (3km AGL) and 

500hPa (6km AGL) and then divided by a thickness of 3km. For this paper, a 700-500 lapse rate of < -6 °C/km corresponds 

to instability in the mid-level atmosphere while values > -5 °C/km indicate a stable mid-level atmosphere. 

 

*Information related to heavy rain predictors (Kang and Boh, MSS Research Letters 6 #2) is mainly obtained from ‘RAOB 

User Guide & Technical Manual’ and Northern Territory Regional Office’s severe thunderstorm directive. 
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