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EDITOR’S NOTE. 
After two years of publication, I am pleased to present the fourth issue of MSS Research Letters. In line with the end of 
the year, the theme of this issue is ‘looking towards future climate research’. The first letter covers the preparation of 
Singapore’s third national climate change study, an integral portion of the Centre for Climate Research Singapore’s 
(CCRS’s) research in the coming years. The other two letters are co-written by university interns to CCRS. These students 
spend two to five productive months at CCRS working on small research projects, contributing to the centre’s research 
as well as building their own experience as researchers. We wish these future scientists all the best for the remainder of 
their studies and their future careers. 

This issue also marks changes to the staff behind MSS Research Letters. In December, Dr Bertrand Timbal will be 
departing CCRS. Dr Timbal has been a key driving force in the launching of MSS Research Letters, and therefore we must 
thank him for his support for this excellent initiative. We also have Dr Hindumathi Palanisamy joining the editorial team 
as lead editor. Thank you for volunteering for this role, and we wish you well for future issues.  

To all the authors and reviewers of this issue, I would like to thank you for working together to provide these interesting 
contributions. Thank you especially to our external reviewers: Chris Gordon, Gabriel Lau, and Andrew Robertson. Your 
contributions and guidance to ensuring the scientific integrity and improvement of the MSS Research Letters are much 
appreciated.  

To all our readers, both inside and outside Meteorological Service Singapore, we hope you will enjoy this issue of MSS 
Research Letters, and that you will consider submitting suitable material for subsequent issues. 

Warm regards, 
Thea Turkington 
Editor, MSS Research Letters  
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SINGV AS A REGIONAL CLIMATE MODEL TO DELIVER 
SINGAPORE’S 3RD NATIONAL CLIMATE CHANGE STUDY 
Bertrand Timbal, Venkatraman Prasanna, and Muhammad Eeqmal Hassim 

Climate Modelling and Prediction Section, Centre for Climate Research Singapore 

INTRODUCTION 
In 2015, Singapore’s Second National Climate 

Change Study (V2) was publicly released (Gordon et al. 
2015; Marzin et al. 2015). V2 was a collaborative project 
between scientists from the Centre for Climate 
Research Singapore (CCRS) and the UK Met Office 
(UKMO) Hadley Centre. It provided a national 
authoritative perspective on future risks due to climate 
change, in sync with the international community and in 
particular the release of the 5th Assessment Report of 
the Intergovernmental Panel for Climate Change (IPCC, 
AR5, IPCC 2014). V2 relied on the international effort to 
generate global climate model (GCM) simulations of 
current and future climate, the so-called CMIP (Climate 
Model Intercomparison Project) dataset in its 5th phase 
(CMIP5), from which historical simulations and future 
climate projections for Singapore and the Western 
Maritime Continent (WMC) up to 2100 were produced.  

As the international community has been 
progressing in the global science of climate change 
projections, it is important to keep up with the latest 
international developments. The IPCC is currently in its 
6th cycle of global assessment, and the IPCC AR6 series 
of reports will be produced in 2021 and 2022 starting 
from the Working Group I (WGI), through the other two 
WGs and up to the Synthesis Report (SR) to be released 
in March 2022. It has thus been decided in Singapore to 
deliver an update in the form of a 3rd National Climate 
Change Study (or V3 for short) in sync with the IPCC 
calendar, aiming for the release of a new stakeholder 
report in sync with the IPCC cycle and SR release in early 
2022.  

Some of the important new international 
scientific developments need to be captured by V3. The 
first has to do with future Representative Concentration 
Pathways (RCPs), which are based on plausible global 
emission scenarios that take into account socio-
economic and technological assumptions of how the 
future could evolve (van Vuuren et al. 2011). V2 used 
two plausible RCPs, RCP8.5 and RCP4.5, as global 
emission scenarios to illustrate the dependence of the 
projected changes on the trajectory of anthropogenic 
emissions in the foreseeable future. RCP8.5 is roughly a 

business-as-usual future scenario, while RCP4.5 involves 
some important global mitigation measures. However, 
these two RCPs not compatible with the newly signed 
Paris Agreement, and hence there is a need to explore a 
more stringent RCP, such as RCP2.6 which has a 50% 
chance of limiting the global warming below a 2°C 
target. 

The second new development to be 
considered involves the underlying Global Climate 
Models (GCMs) database, which provides the scientific 
basis to explore global climate change projections, has 
continued to evolve. CMIP is now in its 6th instalment 
(CMIP6; Eyring et al. 2016). Since V2 was based on 
CMIP5 GCM simulations, it is therefore important that 
V3 makes use of the latest set of CMIP6 model 
simulations. In particular, early analysis of the CMIP6 
database indicates that GCMs are now more sensitive 
and display a stronger warming in response to 
anthropogenic forcings (CMIP6; 2019). CMIP6 
represents a 4-fold increase in the size of the database 
assembled compared to CMIP5, offering a large set of 
GCMs. More importantly, CMIP6 is populated with new 
types of experiments, which are directly in response to 
science questions. These new type of experiments offer 
the possibility of novel assessment of future risks 
related to climate change that V3 should endeavour to 
make use of. This is particularly relevant in the context 
of Singapore when it comes to sea level rise projections, 
as specific experiments will provide information about 
the various components relevant to sea level (e.g. 
change in the cryosphere). 

Besides the progress in climate science across 
the international community, the research landscape in 
Singapore has also evolved. The most consequential 
change is the development over the last five years of a 
new limited area model, SINGV, developed in 
partnership between CCRS and the UK Met Office 
(Huang et al. 2019). SINGV is now run operationally by 
the Meteorological Service Singapore (MSS) and hence 
benefits from daily scrutiny by forecasters, and its 
performance is assessed using a range of objective 
evaluation metrics. This gives a very strong basis to 
establish SINGV as the Regional Climate Model (RCM) of 
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choice to complete a new set of National Climate 
Change projections. 

THE SINGV MODEL 
As part of V2, GCM simulations were dynamically 

downscaled using the RCM developed by the UKMO 
Hadley Centre (HadGEM3-RA). In total a subset of 9 
selected GCMs were downscaled to a spatial resolution 
of 12 km over the Southeast Asian region. At 12 km, 
important topographical features that affect the local 
climate such as coastlines and mountains across the 
WMC become much better resolved than in GCMs. For 
example, the island of Singapore is not represented in 
most current GCMs (Hassim et al. 2016). 

In addition to the main V2 simulations at 12 km 
resolution, the first version of SINGV (SINGV v1) was 
used to run experimental 10-year convection-
permitting simulations at 1.5 km resolution over a much 
smaller domain (390 x 390 grid points) centred on 
Singapore. This is turn was nested within a 4.5 km 
intermediate domain (800 x 800 grid points) inside the 
big 12 km RCM domain (see Figure 1).  SINGV v1 was 
based on the most recent version of the UK Met Office 
1.5 km numerical weather prediction (NWP) model at 
the time, UKV (Kendon et al. 2014), albeit with a number 
of enhancements. These are: i) using the ENDGAME 
dynamical core instead of New Dynamics; ii) a ‘grey-

zone’ blended boundary layer scheme; iii) a revised 
warm rain microphysics scheme; iv) a shallow 
convection parameterisation; v) inclusion of graupel as 
a predicted variable; vi) increasing the number of model 
levels to 80 and vii) using the 100m SRTM (Shuttle Radar 
Topography Mission) dataset to derive the mean 
orography.  

Since 2013, SINGV has continuously evolved as 
part of the development of a new NWP system for 
Singapore. From July 2019, SINGV became operational 
at version 5 (SINGV v5) and has since been issuing 
numerical weather forecasts for Singapore and the 
wider Malay Peninsula/Sumatra region. A time 
evolution of the SINGV model is presented in Figure 2.  

In 2018, preliminary experiments were 
conducted to explore SINGV’s potential as an RCM for 
the WMC; several versions were tested in-line with the 
ongoing development of the NWP system (Huang et al. 
2019). Results presented here are primarily for versions 
v4.1 and v5.0, and these are compared to SINGV v1, 
used earlier as part of V2. At the time of writing, SINGV 
v5 is based on the Unified Model (UM) version 11.3, and 
is the basis for the tropical version of the UM known as 
RA1T (Regional Atmosphere 1 – Tropical). Performance 
evaluations among the different versions suggest that 
SINGV v5 is likely to be the definitive version of the RCM 
proposed for the delivery of V3. Some tests were also 
done with the most recent physics package that will 
form the next tropical version of the UM (RA2T), known 
here as SINGV v6. 

To evolve SINGV from an NWP model to an RCM 
required further evaluation and tuning. These were 
needed in order to: (i) ensure the model is stable over 
long integrations for the likely domain(s) of interest; (ii) 
access suitable ancillary files such as the appropriate 
land-sea mask, orography, land cover type, time-
evolving Sea Surface Temperatures (SSTs); and (iii) test 
the model with different boundary conditions to ensure 
it will be suitable as a downscaling tool embedded 
within a GCM. 

Besides these technical aspects, some 
considerations have to be made to ensure the suitability 
of the tool for investigating scientific questions. These 
include the ideal domain configuration (balancing 
resolution with computing cost and taking into account 
the suitable ratio between outer domain boundary 
conditions, horizontal spacing and inner domain 
resolution) and suitable model configuration providing 
the most realistic regional climate patterns and 
characteristics. 

Figure 1 Map of the Western Maritime Continent showing 
land elevation (coloured background in m) with the various 
domain sizes considered: during V2 when the RCM was 
integrated at 12 (D3), 4.5 (D4) and 1.5km (D5), and tested for 
V3: at coarse resolution (D1: either 9, 8 or 4.5 km) and fine 
resolution (D2: either 2 or 1.5 km). 
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A series of integrations, up to a month long, of 
the model were completed to ensure that the technical 
aspects were successfully mastered and to decide on 
the optimal set-up to underpin the scientific research 
required as part of delivering V3. Both January and July 
were used in the tests in order to sample the annual 
cycle, and for some tests three years were used (2001, 
2002 and 2003) to avoid results being unduly biased due 
to natural variability. A brief summary of the various 
tests is as follows. 

The first climate mode experiments attempted 
with SINGV were with version 4.1, in which January 
2001 was simulated with the latest ECMWF ReAnalysis, 
ERA5 (Hersbach et al. 2019; SST updated at 3 hour 
intervals). Three different grid resolutions were tested: 
9, 4.5 and 1.5km. Both 9 and 4.5km were on a large 
domain (D1 close to the domain chosen by the 
international community (CORdinated Experiments for 
South-East Asia: CORDEX-SEA): 18S-26N; 90E-142E, see 
Figure 1) while the 1.5km simulation was on a small 
domain (D2 which was close to the domain used 
operationally for SINGV as an NWP model: 5S- 8N 95E-
109E, see Figure 1).  

To ensure the model’s stability, gravity wave 
(Rayleigh) damping was implemented at model levels 
above 26km to minimise the reflection of upward-
propagating gravity waves generated by convection. 
Over the D1 domain at 9km resolution, the model was 
tested both with and without parameterised 
convection. Early simulations were halted due to the 
model blowing up on a few occasions. The numerical 
instability was overcome by reducing the duration of 
the time step (the normal duration was 3 minutes, and 
on some occasions a time step as short as one and a half 
minutes was required). 

After establishing the stability of the model over 
the chosen domains, integrations of two versions of 
SINGV, v4.1 and v5, were tested for 10 days in Jan 2001, 
driven by ERA5. Apart from changes to the physical 
package, an important difference between v4.1 and v5 
is the vegetation coverage data used. SINGV v5 uses 

vegetation classification from the European Space 
Agency Climate Change Initiative (CCI), while v4.1 uses 
data from the International Geosphere-Biosphere 
Programme (IGBP). This was noted to be important for 
some regions where the classification of vegetation 
types was noticeably different (e.g. over Thailand). The 
CCI vegetation dataset has now become the default for 
the newer version of the UM model, and the local 
differences observed in the test run are likely to remain 
an improved feature in simulations with newer versions. 

The final set of testing was performed using 
SINGV v5.0, the most recent version available from the 
UM model (version 11.3) and which included the most 
recent physical package (RA1T) that was accessible. 
SINGV v.5 had been tested in Singapore as part of the 
operational development of SINGV. A newer physical 
package (RA2T) was provided by the UM partnership 
and was also tested (SINGV v6). Only small changes in 
the physical package are of relevance to the region of 
the WMC, and so far no noticeable differences have 
emerged from the tests conducted. Hence results for 
SINGV v6 are not presented here, and it is likely that the 
version of SINGV chosen for V3 will remain SINGV v5. 

The tests consisted of month-long simulations 
for both January and July, across the years 2001, 2002 
and 2003. A 3-day spin-up time was used and 
simulations were completed for both D1 and D2 
domains with a resolution of 8km and 2km, respectively. 
The Globe Digital Elevation Model (DEM) orography 
(30m resolution) was used for the simulation, the 
vegetation fraction was from the CCI dataset, although 
the land-sea was classified using the IGBP land-sea mask 
for both 8km and 2km simulations. The SST fields are 
updated at 3 hour intervals from the ERA5 skin 
temperature fields. Both 8km and 2km simulations were 
done with the explicit representation of convection.  

Simulations at 2km in the D2 domain were forced 
by outputs from the 8km simulations on the D1 domain. 
For the simulations at 8km in the D1 domain, tests were 
conducted using ERA5 lateral boundary conditions, 
using either the 137 vertical model levels or the 37 

Figure 2 Schematic of the evolution with time of the SINGV model versions, indicating the major changes in the 
physics for each version and its relationship to the base Unified Model (UM) version used. 
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standard pressure levels (from 1000hPa to 1hPa). The 
second setup was a downgrading of the quality of the 
information provided to the inner model, and was 
conducted in order to test a setup more aligned with 
what would be possible using GCM data from the CMIP 
database. Overall, only small differences were identified 
between the two setups (full 137 vertical model levels 
or reduction to the 37 standard pressure levels) of 
boundary conditions. 

 

TESTING OF SINGV CONFIGURATION AS A SUITABLE 

RCM 
One of the primary objectives of testing the new 

versions of SINGV was to establish if some of the known 
shortcomings of the RCM used as part of V2 were 
improved upon using more recent versions of SINGV. In 
particular, it has been well documented that extreme 
rainfall projections over land from V2 had a low level of 
confidence due to the inability of the model to 
reproduce the diurnal cycle of convection and 
reproduce the upper tail of the cumulative distribution 
function of daily rainfall (i.e. the wet extremes; Hassim 
et al. 2016).  

The current evaluation was conducted with the 
first new version tested, SINGV v4.1 with and without 
convection parameterised at 9km resolution (Figure 3).  
Compared to SINGV v1, run at a higher resolution of 
4.5km, SINGV v4.1 produced a more realistic peak of 
diurnal rainfall both in terms of timing and intensity. It 
was also evident that with the convection 
parameterisation switched on, the model initiated 
convection too early in the day and peaked too early 
compared to that shown in TRMM precipitation data. 

However at this coarse resolution of 9km, the 
magnitude was closer to what was observed. For all 
configurations with SINGV v4.1, an improvement in the 
diurnal cycle of convection over land was noted 
compared to the earlier SINGV v1. 

The differences between SINGV v4.1 with and 
without convective parameterisation at 9km resolution 
were evaluated further by comparing the daily totals for 
the month-long integration in January for all the 
continental points across the larger domain D1 (Figure 
4). While both configurations of SINGV v4.1 exhibited 
daily variability on par with observations (using TRMM 
estimates), SINGV v4.1 with parameterised convection 
appears to have a systematic overestimation of the daily 
rainfall. This result, combined with the previous finding 
that the daily timing of maximum precipitation is better 
captured when the convection is explicit, strongly 
suggests that even at a very coarse resolution of 9km 
the model is already “convection-enabling” and is 
performing better without the convection 
parameterisation. This result was confirmed with the 
SINGV v5 model run at 8km with explicit convection, 
which also matched observations for daily rainfall totals 
(Figure 4). Furthermore, this result is consistent with 
other studies for Western Africa using the UM model 
with a 4.5km horizontal resolution (e.g. Berthou et al. 
2019) and for the WMC using the WRF model (Argueso 
et al. 2020).  

Having assessed that recent versions of the 
SINGV model show a marked improvement compared 
to SINGV v1 and that the recent versions are performing 
as well and in fact better without the convection 
parameterisation even at coarse resolution (9km), two 

Figure 3 Diurnal cycle of land-only 
rainfall averaged across the D2 domain 
(see Figure 1 for details) for the earlier 
version of SINGV (v1) used as part of V2 
and showing comparison with a more 
recent version of SINGV (4.1) with either 
explicit or parameterised convection 
and also TRMM observations. Diurnal 
cycles are computed for the month of 
January 2001 for both observations and 
SINGV simulations. 
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questions remain to be evaluated: 1) the added value of 
running the model at much higher resolution (<= 2km)  
and 2) the selection of the most suitable version of the 
model for V3. The limited testing so far does not give a 
definitive answer to these two questions. This is 
particularly critical for the model outputs within the 
domain in the vicinity of Singapore (D5, Figure 1), as the 
ability of SINGV to reproduce the diurnal cycle of rainfall 
for land points across the very small domain varies 
amongst the model versions with explicit convection 
(v4.1, v5, as well as v6, which is not shown) giving no 
clear answer as to which might be the most suitable 
setup. These versions also seem to perform worse than 

those with parameterised convection. However, there 
are also large uncertainties in the observations (Figure 
5).  Nonetheless, there are some indications that for the 
same version of the model, a higher resolution tends to 
give a peak that is earlier and also has a higher daily 
maximum e.g. v4.1 between 1.5 km (green curve) and 9 
km (yellow curve) and v5 between 2 km (pink curve) and 
8 km (blue curve).  However, the differences are small 
and in light of the very high computing cost, it may not 
be warranted to perform such high resolution 
simulations. Similarly, the differences between v5 and 
v4.1 are small but again point towards a small 
improvement with an earlier peak of daily maximum 

Figure 4 Day-to-day variability of 
daily total rainfall for land-only 
points averaged across the D1 
domain (see Figure 1 for details) 
for different versions of SINGV 
(4.1 and 5.0) with explicit 
convection and comparison with 
parameterised convection for 
SINGV v4.1 and TRMM 
observations . Daily values are 
from a single month of 
simulation (January 2001). 

Figure 5 Diurnal cycle of land-only 
rainfall averaged across the D5 domain 
(see Figure 1 for details) for the various 
versions of SINGV (4.1, 5.0) for low 
resolution (8 or 9 km) and fine 
resolution (2 or 1.5 km) and compared 
with both TRMM (plain) and CMORPH 
(dashed) precipitation observations. 
Diurnal cycles are computed for the 
month of January 2001 for both the 
observations and SINGV simulations. 
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rainfall, thus suggesting that it makes sense to use 
SINGV v5,  the most recent version and which has also 
been fully tested for NWP purposes. 

The conclusion emerging from this series of tests 
to establish the most suitable version of SINGV as the 
RCM of choice for V3 indicates that SINGV v5 should be 
used for a large domain encompassing the WMC, for 
which the model is now demonstrably stable and 
benefits from up to date ancillary files. A resolution of 
8 km, with the convection explicitly represented by the 
model instead of being parameterised, appears to be a 
suitable configuration. It performs better than what was 
used for V2 (HadGEM3-RA with a resolution of 12 km) 
as well as the first version of SINGV, which was 
integrated for short time-slices at 4.5 and 1.5 km. These 
findings will need to be confirmed with longer 
integrations using ERA5 as boundary conditions (so far 
only month-long integrations have been performed) 
and focusing on other aspects than the diurnal cycle of 
convection. These will be spelled out in the V3 plan 
described in the next section. However, at this stage of 
the testing, it is not obvious that the additional small 
gains in terms of producing a better diurnal cycle of 
rainfall when the resolution of SINGV v5 was increased 
to 2 km, warrants the integration of long and costly 
climate simulations on a smaller domain surrounding 
Singapore. 
 

PLANNING OF THE 3RD NATIONAL CLIMATE CHANGE 

STUDY 
The aim of V3 is to conduct a national 

assessment of the effect of climate change on Singapore 
and the surrounding region, the WMC, based on the 
latest climate projections made available by the 
international community as part of CMIP6, in order to 

be consistent with the projections informing the 6th 
Assessment Report of the IPCC.  

The remainder of the programme will run until 
2022 when a high level report aimed at stakeholders 
and describing the new set of climate change 
projections will be released in conjunction with the IPCC 
synthesis report in March 2022. This stakeholders’ 
report will be the main output of the entire programme 
and will serve to inform stakeholders about future 
projections and demonstrate the relevance of the latest 
IPCC report within the context of Singapore. The report 
will likely be supported by several publications in peer-
reviewed literature to establish the scientific credentials 
of the underpinning work supporting the V3 projections.  

Beside the documentation of the work, it is 
expected that a full set of climatological data tailored to 
stakeholder needs will be produced and made available. 
The variables of interest and their spatial and temporal 
resolutions will need to be decided in consultation with 
stakeholder agencies and will include, but not be limited 
to, temperature, rain and sea level information.  

In order to successfully deliver new scientific 
insights and state-of-the-art national climate change 
projections, a number of mandatory components of the 
programme must be completed in the logical order 
depicted in Figure 6.  

To start with, a limited number of GCMs will be 
selected and evaluated from the international datasets. 
These GCMS will come primarily from CMIP6, but it 
might be relevant to also include some of the models 
from CMIP5 which were used during V2 to support a 
continuity in the understanding of the uncertainties in 
the projections between V2 and V3. A suitable and 
robust methodology was established as part of the 
delivery of V2 where 9 GCMs were selected from CMIP5 
that had an appropriate representation of the current 
climate and covered the range of sensitivities in global 

Figure 6 Schematic of the critical components to be undertaken to deliver V3 (Note: VIAs stands for Vulnerability 
and Impact Assessments). 
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response to external forcing (Marzin et al. 2015). By and 
large, the same methodology will be applied to CMIP6, 
ensuring that all models considered represent the key 
features of Southeast Asia’s baseline climate 
realistically. In particular, the selected models must 
represent large scale climate circulation features 
relevant to Southeast Asia (e.g. the behaviour of the 
Monsoon, such as its annual cycle across the Maritime 
continent) and relevant features of interannual 
variability (e.g. the El Niño Southern Oscillation, ENSO, 
and the Madden-Julian Oscillation, MJO). In addition, an 
important aspect of exploring the CMIP6 dataset would 
be to establish if models’ climate sensitivities are 
different, and ensure that the blend of selected models 
captures any change in sensitivity across the CMIP 
dataset and complements the choices made as part of 
V2. 

In parallel, long climate simulations with the 
RCM will also proceed. As mentioned in the previous 
section, it has been established that SINGV is a suitable 
RCM for providing high resolution convection-enabling 
modelling capability across the WMC and, if required, at 
even higher resolution for a smaller domain around 
Singapore, although the benefits obtained with this 
higher resolution (up to 2km) come with a substantial 
additional computing cost. So far, the focus has been on 
the optimal setup in which to integrate SINGV and also 
on its performance for rainfall, in particular diurnal and 
annual cycles across Singapore and the region. But the 
extent of the model’s ability has yet to be fully 
established by running a longer (30 to 50 years) 
integration forced by the latest generation of 
reanalyses, ERA5. This will provide a suitable benchmark 
to understand the model’s behaviour and any possible 
shortcomings prior to forcing it with boundary 
conditions from the selected GCMs mentioned above. 
The second phase will then focus on using these GCMs’ 
forcing data (instead of reanalyses) and observing the 
effect of this on model performance, starting with an 
evaluation of the impact on the model’s skill and 
exploring methods to deal with the issues that are 
encountered with GCMs (i.e. lower resolution and 
systematic biases).  

Once the model setup has been finalised, a 
major, computer-intensive component will be the 
integrations of the SINGV model to obtain several 
downscaled climate change projections across the 
WMC. For each selected GCM, a “current climate” 
simulation should be completed for a 50-year period 
(1965-2015). The outputs for Singapore are likely to 
require some further adjustments to ensure they are 
directly suitable for impact assessment, such as the bias 

correction which was introduced as part of V2. This is to 
be evaluated based on the earlier simulation of similar 
duration using ERA5 reanalyses as boundary conditions 
which will provide the upper boundary of the skill of the 
nested model when forced by unbiased external 
conditions. In that context, some limited high resolution 
simulations (e.g. 2km) might be justified to confirm the 
validity of the bias correction method. Then, for each 
GCM, several simulations will be performed for the 
remainder of the 21st century using selected emission 
scenarios. The likely list is RCP2.6 (consistent with Paris 
agreement targets), RCP4.5 (middle ground, likely 
outcome) and RCP8.5 (consistent with business-as-
usual approach).  

For the analyses of the RCM simulations, the first 
objective will be to validate the RCM simulations of the 
current climate, against both observations as well as the 
simulation of the current climate from the host model 
to evaluate issues such as possible drift from the host 
model climatology as well as quantifying the added 
value of the RCM compared to the host model. In that 
regard, this component will focus on the exploration on 
key mechanisms driving the climate of the WMC which 
are not well captured by GCMs due to insufficient 
spatial resolution in the shorter timescale (e.g. diurnal 
cycle of convection and contrast between land and sea), 
to large-scale phenomena (MJO propagation, 
monsoonal flow reversals, ENSO and Indian Ocean 
teleconnections). This analysis will build on the scientific 
knowledge accumulated in CCRS since the completion 
of V2. The evaluation of the RCM ability to add value in 
regard of these processes will be highly significant 
scientifically. From these simulations, time series will 
need to derive for Singapore for key variables with a 
proper bias correction. At the likely resolution used for 
these simulations (8 km, as used in the most recent test 
cases with SINGV v5) even if Singapore is covered by up 
to 10 grid boxes, the information for each grid boxes 
should not be treated as independent of each other due 
to numerical smoothing. Instead, an island-wide 
synthetic series should be created for all variables being 
considered, taking care not to reduce the reproduction 
of extremes. This latter point is likely to require having 
simulations at higher resolution (e.g. 2km or less). 

In addition to running simulations across the 
WMC as a coarse convection-enabling resolution, there 
is a scientific interest in running simulations at a higher 
resolution for a smaller domain encompassing 
Singapore. A very fine resolution could enable the 
model to represent more accurately the convective 
nature of the rainfall affecting Singapore such as the 
diurnal cycle, and particularly relevant in the Singapore 
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context, the possible change of properties of extremes 
rainfall events. Beside the scientific interest, the 
considerable computing cost of these very high 
resolution simulations would have to be balanced with 
the needs of the many Vulnerability and Impact 
Assessment (VIA) users who require outputs with very 
fine resolution. It is likely that only limited time slices 
can be afforded and will have to be selected to 
represent both the current climate and appropriate 
future timelines of interest to stakeholder agencies. The 
duration and number of time slices will need to be 
decided upon confirmation of a suitable resolution to 
obtain real gain in terms of the model ability to 
reproduce the key phenomena of relevance at that fine 
scale. It is expected that the model will have to be 
integrated at 2km or less in order to capture well the 
annual cycle of the diurnal cycle of convection around 
Singapore and its immediate vicinity. These simulations 
will be forced by boundary conditions from the SINGV 
simulations for the WMC domain. Such simulations will 
be able to provide output series with sufficient spatial 
resolution to depict plausible spatial variations around 
the island that will need to be validated against the high 
density network of observations across Singapore 
available for the most recent period. The focus is likely 
to be on rainfall but other variables may be of interest 
to users, such as temperature (in relation to thermal 
comfort studies) and wind (in relation to sea level rise 
and inundation studies).   

A dedicated effort is also required to deliver a 
new set of projected sea levels for the 21st century, fully 
encompassing all uncertainties. Of particular focus will 
be evaluation of global sea level rise due to thermal 
expansion and ice mass loss from glaciers and ice 
sheets, including potential for high estimates due to 
uncertainties about continental ice sheets. Besides the 
global evolution of sea level, regional and local mean 
sea level variations driven by climate variability will 
need to be captured, as well as weather-related 
extreme sea levels (e.g. monsoonal flows, storm surges, 
waves) and corrected for the possible movement of the 
land (global patterns and local subsidence). Because of 
the existential threat to Singapore, particular emphasis 
needs to be placed on the low probability-high impact 
tail end of the distribution of projections. This was 
delivered in V2 under the H++ approach (Marzin et al. 
2015) and will need to be improved on in V3 by 
delivering estimates of the probability of occurrences 
for the most extreme part of the distribution, especially 
the consideration of possible combined effects between 
regional signature of global sea level rise and changes in 
factors influencing extremes such as storm surges. 

To ensure the effectiveness of V3 beside the 
scientific achievement, a dedicated effort will also be 
put into the documentation and communication of the 
outputs. Early in the programme, there will be a need to 
re-evaluate stakeholder needs. This was done 
comprehensively as part of V2, but will need to be 
updated. In particular the continuity between the 
projections across V2 and V3 will need to be 
communicated to stakeholders to help guide their 
uptake to the scientific findings. Besides the 
documentation (scientific papers, the stakeholder 
report and, as required, a more technical report), 
supporting science to help explore the projections data 
should be deployed. There is a need to develop a 
methodology to express the range of uncertainties in 
terms of climate risk or climate future (e.g. Whetton et 
al. 2012). Finally, some non-technical material needs to 
be delivered such as factsheets to explain in a very 
concise manner some key aspects of the project and its 
findings, and sets of slides to communicate essential V3 
findings.  

The final part of the programme will be the 
delivery of the output data on a suitable platform. The 
most effective mechanism would be a web-based data 
portal with several layers of access that provide: i) a 
basic level, freely available to all, providing access to 
high level information such as the synthesis report, 
some plots, simple data series, ii) a “registered” level, 
for registered users (registration will ensure there is 
some understanding of the users’ interests and the 
likely usage of the data) providing access to more in-
depth information (e.g. technical report, most graphics, 
bias corrected model outputs)  and iii) an “educated” 
level, accessible to users with whom some form of 
relationship has been established to ensure that their 
understanding of the science is compatible with getting 
access to the complete set of model outputs. 

While all the components mentioned above are 
mandatory to ensure the successful delivery of a new 
set of national climate projections, some additional 
research directions could also be explored. While not 
essential to complete the main objectives, they would 
contribute toward a more comprehensive project 
(Figure 7).  

The first additional component would be to 
complete downscaled climate change projections 
generated with a second RCM unrelated to SINGV. One 
of the main criticisms of V2 was that all the projections 
were based on a single RCM, and therefore it was 
impossible to evaluate the potential that the projections 
may be misleading due to some systematic deficiency of 
the model. While V3 will be based on SINGV that has 
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benefited from more in-depth evaluation than the 
previous model used during V2, it remains possible that 
some specific behaviour of SINGV could unduly 
influence the projected changes. It would therefore be 
useful to provide comparable projections with a 
different RCM. While several options exist for potential 
RCMs which have been used in the region, the most 
likely candidate is the WRF model, which has been 
extensively used in Singapore, in particular by a group in 
Tropical Marine Science Institute within National 
University of Singapore (Raghavan et al. 2016). Through 
a collaborative approach, parallel simulations using the 
same GCM boundary conditions will allow for a more 
comprehensive consideration of the uncertainties, 
including the uncertainties due to the downscaling 
method.  

Dynamical downscaling allows higher resolution 
information to be obtained from a climate model. 
However, this information remains coarse from the 
perspective of a precise location (e.g. a measurement 
station on which an impact modelling tool might be 
based) and comes at a high computing cost. For this 
reason, statistical downscaling provides a useful 
alternative and is based on an empirical statistical 
relationship between the large-scale (predictors) and 
the local scale (predictands). CCRS has developed a 
methodology to classify daily meteorological situations 
into 8 clusters of weather regimes which are useful for 

describing day-to-day variability and relating it to local 
quantities such as rainfall in Singapore (Hassim and 
Timbal, 2019). Provided the global climate models are 
able to properly represent these weather regimes, this 
method could be used as a tool to interpret the model 
simulations in terms of their local signature in 
Singapore. It would then be possible to interpret 
changes in the weather regime frequency and/or local 
signatures between simulations of the current and 
future climate in terms of local changes in the 
predictands. This would thus provide a method to 
estimate local change due to climate change 
independently from the modelling approach which, 
while physically based, relies on estimation within the 
model parameterisations.  Examples of studies done 
overseas (Climate Change In Australia, CSIRO and BoM, 
2015) have shown that by comparing and contrasting 
statistically and dynamically downscaled climate change 
projections, it is possible to more appropriately 
determine the level of confidence to be placed on the 
projections, in particular because many more global 
simulations and scenarios can now be explored, due to 
the low computational cost. 

Finally, understanding the combined effect of 
urbanisation and climate change for the city-state of 
Singapore would be highly beneficial. Very high 
resolution simulations (300m or less) could be carried 
out to explore the role of the local urban canopy scale 

Figure 7 Schematic from Figure 6 completed with additional optional components (highlighted by red framed 
boxes) that could be undertaken for a more complete V3 project (Note: UHI stands for Urban Heat Island). 
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and UHI dynamics in modifying the local climate. This 
would require SINGV to be further developed into an 
urban-scale model (uSINGV) and integrated at 
sufficiently high resolution (300m or less). Some early 
testing has already been completed (Simon-Moral et al. 
2019), and if further long-term integration confirms that 
the model is suitable for climate integration, a series of 
simulations could be performed, using future climate 
boundary conditions and various urbanised landscapes 
to establish the combined effects of climate change and 
possible mitigation approaches. These simulations 
would come at a very high computing cost, and hence 
only very small domains would be feasible and only for 
short climatic integrations. 
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INTRODUCTION 
Wet spells are consecutive days of substantial 

amounts of rainfall and cool spells are consecutive days 
of low temperatures. These weather events are rare and 
often have significant impacts on Singapore. For 
instance, Singapore experienced a bout of cool and rainy 
weather from 10 - 14 January 2018 during which the 
daily maximum temperature ranged from 23.8oC to 
27.3oC, belonging to 2% of the coldest days in Singapore 
over the past 40 years. Floods were triggered in parts of 
Singapore by the persistent rainfall (Channel News Asia, 
2018) while people resorted to wearing winter clothing 
to resist the low temperatures (The Straits Times, 2018). 
With these significant impacts on the daily lives of the 
people in Singapore, the prediction of wet spells and cool 
spells are of meteorological and public interest. 

The strong association between cold surges 
based on the definition by Lim et al. (2017) and wet spells 
has been investigated (Yang et al., 2019) by compositing 
the moisture flux patterns in the South China Sea over 
the wet spells. However, the characterization of wet 
spells based on cold surges in these studies relies on a 
cold surge index which applies several predefined 
thresholds to certain atmospheric fields in specified 
regions (Lim et. al, 2017). This study explores if an 
alternative characterization of cool spells and wet spells 
exists based on clustering of the moisture flux fields. 
Moisture flux plays an important role in weather 
forecasting (Banacos and Shultz, 2005) and is expected 
to also play a key role in the wet and cool spell process 
in Singapore. In this study, we wish to understand the 
variability of the regional moisture pattern in connection 
with the local temperature and rainfall observed in 
Singapore and identify the key patterns responsible for 
the observed wet and cool spells using clustering. The 
aim is to construct and understand the cool and wet spell 
climatology of Singapore. This will allow us to 
understand the variability of the regional moisture flux 
patterns during the northeast monsoon season and their 

connections to these spells, with the objective of 
improving the ability to predict these events. 

Cool and wet spells in the northeast monsoon 
season from November to March (NDJFM) were first 
defined and identified based on historical data from 
Singapore's temperature and rain gauge records. A 
clustering algorithm was then used to separate each day 
in the monsoon season into different clusters based on 
its atmospheric fields. The aim is to isolate wet and cool 
spell days to a single cluster and hence characterize the 
spells using this cluster’s atmospheric fields, with the 
ultimate objective of replacing the definition of spells 
with such a cluster. 

DATA AND METHOD 
A wet spell event is defined to be a period over 

which the daily rainfall duration is more than 6 hours and 
the average daily rainfall duration during the event is at 
least 8 hours for a minimum of two consecutive days. 
These durations represent the 90th and 95th percentile 
rainfall duration respectively during the NDJFM season 
from 1955-2018. The daily rainfall duration is given by 
the maximum rainfall duration recorded across all of 
Singapore’s available rain gauges. Similarly, a cool spell 
is defined to be a period over which the daily maximum 
temperature is less than 27°C (lowest 4% of the NDJFM 
season) for at least two consecutive days. The daily 
maximum temperature is given by the average of the 
daily maximum temperature recorded across five 
weather stations in Singapore. Rainfall and temperature 
data from 1955 to 2018 were used to identify past wet 
and cool spell events.  

It should be noted that there were fewer 
stations and rain gauges during the 1950s to the 1970s, 
and hence there was a chance of missing the detection 
of some of the wet and cool spell events during that 
period. However, due to the small size of Singapore and 
the large-scale impact of cold surges, it is reasonable to 
expect wet and cool spell events to be island-wide 



    Issue #4                    MSS Research Letters Page    15 
 

phenomena in most cases. As a result, the chance of 
missing them due to fewer observations in the past is 
low.  It is therefore still possible to construct a reliable 
climatology of wet and cool spells despite limited 
observations in the earlier decades. 

The identified dates of wet and cool spells were 
then compared against those dates obtained from the 
clustering of selected atmospheric fields. The fields used 
in this study were obtained from the European Centre 
for Medium Range Weather Forecasts (ECMWF) Interim 
Reanalysis dataset (ERA-I). The reanalysis dataset 
consists of daily mean values of various atmospheric 
fields obtained by averaging over 6-hourly data spanning 
from 1979 to 2018 at a spatial resolution of either 1x1 
degree or 0.125 x 0.125 degree (Dee et al., 2011). The 
atmospheric fields used in this study include the two 
components of the vertically integrated moisture flux 
vector: the vertical integral of the eastward (VIQU) and 
northward (VIQV) moisture flux and the divergence of 
the moisture flux vector (div VIMF). These vertically 
integrated moisture flux datasets were of a resolution of 
1x1 degree and were precomputed using 60 
instantaneous analysed model levels from the surface to 
the top of the atmosphere (0.1 hPa), and were directly 
available as part of the ERA-I dataset.  

Another atmospheric field variable used in this 
study is the 2-metre temperature (T2M) at a resolution 
of 0.125x0.125 degree. The domain for the clustering of 
the moisture flux variables (VIQU and VIQV) included all 
grid points bounded within the region -2°S−12°N and 
98°E−115°E (270 grid points). The higher resolution T2M 
data were clustered over the grid points within a much 
smaller region around Singapore within 1.25°N−1.50°N 
and 103.625°E−104°E (12 grid points). The clustering 
domains are shown in figure 1. These domains were 
chosen so as to focus on the low temperature and wet 
conditions observed locally over Singapore during wet 
and cool spells, and the associated moisture flux pattern 
over a broader region in the South China Sea. 

In this study, the K-Means clustering algorithm 
was used to cluster dates based on the similarity of their 
associated daily mean atmospheric fields. There were 
270 grid point values for each of the 2 components of the 
moisture flux, but only 12 grid point values for the T2M 
variable. There was therefore a huge imbalance in the 
relative contribution of the moisture flux and the local 
T2M variables to the clustering algorithm. It was 
desirable to treat the local T2M variable and the 
moisture flux variables on equal footing during the 
clustering process, hence the 12 grid point values were 
duplicated 23 times (becoming 276 grid points) to match 
approximately the 270 grid points for the moisture flux 

variables. Since the Euclidean metric in K-Means 
clustering was used, the procedure of duplication is 
mathematically equivalent to the assignment of weights 
to the features used in the clustering, a technique 
commonly used in weighted clustering to assign 
importance to certain features. Without the duplication, 
the huge number of moisture flux variables will 
overwhelm the local temperature variable at the few 
grid points. It should be noted that the objective of the 
clustering is to separate the dates based on 
temperature, i.e. the clustering procedure is outcome-
driven. Performing the duplication step helps to achieve 
a balance between the generality of unsupervised 
learning and the specificity of the desired outcome (a 
cluster with low temperatures and high rainfalls) to 
identify cool and wet spells. To verify the validity of 
duplication, tests were also performed where the 
number of duplications was varied, and the subsequent 
clustering results analysed.  

 
Figure 1 (a) The larger red rectangle represents the 
clustering domain (270 grid points) for the 2 
components of the moisture flux variables (VIQU, VIQV 
at 1x1 deg). The smaller red rectangle (magnified in (b)) 
over Singapore represents the clustering domain for 
the 2-meter temperature (T2M at 0.125 x 0.125 degree, 
12 grid points). 
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Prior to clustering, for each grid point in the 

atmospheric field, the field is standardized according to 

𝑋௦௧ௗௗ =
X − 𝑋ത

𝜎

 

where 𝑋 is the original field, 𝑋ത is its mean and 𝜎 is its 
standard deviation. With two regional moisture flux 
variables (VIQU and VIQV) and a local (T2M) variable, 
there are altogether 816 (270x2+276=816) standardized 
grid point values used for the clustering of the 6050 data 
points or dates.  

RESULTS AND DISCUSSION 
By applying the definitions of wet and cool 

spells given in the previous section to the rain gauge and 
temperature records of Singapore, an annual average of 
5.6 wet spell days and 1.8 cool spell days during the 

northeast monsoon season was obtained. The length of 
a wet spell and cool spell can range from 2-10 and 2-5 
consecutive days respectively. 74% of all wet spells and 
85% of all cool spells occur during the months of 
December and January. These two months can therefore 
be regarded as the wettest and coolest period for 
Singapore during the entire northeast monsoon season. 
Cool and wet spell events overlap strongly, as can be 
seen in figure 2c. 77% of all cool spell days are in fact wet 

spell days, but only 25% of all wet spell days are cool spell 
days.  

The annual occurrence anomalies of wet spells 
and cool spells are shown respectively in figures 2a and 
2b. The anomalies are plotted against ENSO years (from 
June to May). Each year is classified into one of the 3 
categories: El Niño, La Niña or Neutral using a detrended 
(with background tropical warming signal removed) 
classical Nino3.4 Sea Surface Temperature (SST) index 
(Turkington et al., 2018). It was found that the 
occurrences of cool and wet spells vary from year to 
year. There seems to be no clear relationship between 
the main mode of natural variability affecting the 
Western Maritime Continent and Singapore (ENSO) and 
the occurrences of cool/wet spells. However, it is 
interesting to note that after the strong El Niño event in 
1997, all subsequent El Niño years appear to be 

associated with negative anomalies. 
In addition, there seems to be some form of 

variability occurring on the decadal time scale. Wet 
spells are seen to be more active during the late 1970s 
to the early 1990s and again from the late 1990s to the 
mid-2000s. From about 2007 onwards, the occurrences 
of both cool and wet spells are generally low, with the 
exception of a spike in cool spell days in the La Niña year 
2017. There is also a relatively large number of cool spell 

Figure 2: (a) and (b) shows the long-term trend in the anomaly (with mean from 1955-2018 subtracted) of the 
occurrences of wet spells and cool spells respectively in Singapore during the northeast monsoon season. Each year is 
labelled as an ENSO year (from June to May, red: El Niño, blue: La Niña, black: neutral, grey: no ENSO data). The ENSO 
classification is based on the detrended Nino3.4 SST index from Turkington et al. (2018). (c) is a Venn diagram showing 
the overlap between wet spell and cool spell days observed in Singapore.  
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days during the mid-1950s to 1970. This should however 
be interpreted with caution as this was a period when 
Singapore was largely rural and the recorded 
temperatures may have a low bias, resulting in an 
overestimate of cool spell events. Moreover, the lower 
number of wet spells observed during that period also 
does not seem to correspond with the high number of 
cool spells. Therefore, the positive anomaly in cool spell 
occurrence may not truly reflect the actual natural 

variability of the regional climate, although this cannot 
be ruled out completely due to the uncertainties 
involved. 

These observed interdecadal variabilities might 
be linked to the interdecadal variability of the East Asian 
winter monsoon (Ding et al, 2014) and its impact in the 
deep tropics. However, a discussion of this would be 
beyond the scope of this work and further studies would 
be required to better understand the potential 
connection. It should also be noted that these analyses 
may be dependent on the choice of thresholds used in 
defining spells. However, we find that using different 
thresholds such as a minimum rainfall duration of 4 
hours and an average of 6 hours resulted in similar 
interdecadal variations. 

In the K-Means clustering algorithm, each date 
is represented by the 816 data points from the 
atmospheric variables VIQU, VIQV and T2M and can be 
considered as a point in an 816-dimensional vector space 
armed with the Euclidean metric. With this 
representation, the distance between points can be 
calculated, giving rise to the notions of the separation, 
the centres (centroids) and outliers of clusters. In this 
method, the number of clusters n was determined using 

the elbow method, where n is chosen such that a further 
increase in n does not significantly improve the 
separability of the clusters. The optimal number of 
clusters was estimated to be four.  

Figure 3a, 3b and 3c show the centroid of each 
of the clusters for the moisture flux vector, moisture flux 
convergence and the number of days in each month 
across the clusters respectively. Cluster 1 shows a 
moderate amount of moisture flux and convergence 
over the South China Sea, implying a moderate amount 
of potential rainfall in the region. The dates in this cluster 
span almost evenly across the months with a slightly 
greater number of days in January and February. Among 
the four clusters, cluster 1 represents the largest 

Figure 3: (a) and (b) show the vertically integrated moisture flux (VIMF) and its convergence respectively for the four 
cluster centroids computed using the K-Means algorithm. (c) shows the frequency of occurrences of each cluster during 
the northeast monsoon season. Cluster 3 is associated with the strongest moisture flux and convergence over the 
equatorial South China Sea. Majority of the wet spells (91%) and cool spells (100%) are associated with cluster 3.  
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proportion (37.2%) of all days during the northeast 
monsoon season. 

Cluster 2 is characterized by the presence of a 
circulation of moisture flux in the South China Sea as 
shown in figure 3a. As a result of this circulation, there is 
a strong convergence of moisture in that region (figure 
3b).  The circulation might be associated with the Borneo 
vortex, a meso-α-scale cyclonic disturbance that forms 
to the northwest of Borneo Island from cold surges 
during the northeast monsoon season. This circulation 
redirects the prevailing northeasterly winds to become 
northwesterly winds around the vicinity of Singapore. 
Due to this shift in wind direction, there might also be a 
corresponding shift in local weather and diurnal pattern 
from the usual northeast monsoon setup. 

Cluster 3 is characterized by the presence of a 
very strong moisture flux in the South China Sea. The 
strong flux transports a large amount of moisture 
towards Singapore and Peninsular Malaysia, and results 
in its strong convergence over the equatorial South 
China Sea as shown in figure 3b. This could result in 
heavy and persistent rainfall, and implies that most of 
the wet spells may actually lie in this cluster. This is 
further supported by the fact that the majority of the 
dates in this cluster fall in December and January during 
the wet phase of the northeast monsoon season.  

In contrast to cluster 3, cluster 4 is 
characterized by generally weak moisture flux and 
moisture flux divergence instead of convergence in the 
region. Most of the days in cluster 4 occur during the late 
northeast monsoon, in the months of February and 
March during which rainfall over Singapore is low. 
Cluster 4 hence clearly represents the dry phase of the 
northeast monsoon. It should be emphasized that all 
four centroid patterns can be found across all months in 
the northeast monsoon season, but that certain patterns 
occur more frequently in certain months. Collectively, 
they represent the key variability of the moisture flux 
patterns in the season. 

With these clustering results, wet and cool spell 
dates can now be matched with the dates in the clusters. 
91% of all wet spell days and all cool spell days lie in 
cluster 3, consistent with the previous analysis of this 
cluster. Any dates falling outside of cluster 3 are unlikely 
to be part of a wet spell event. However, the inverse 
does not hold true because only 17% of the dates in 
cluster 3 are wet spell days. Nevertheless, the necessary 
large-scale moisture flux and moisture flux convergence 
patterns for the occurrence of wet spells has been 
established. 

Also investigated were the changes in the 
clustering results due to the variation of the number of 

duplicates of the T2M dataset. In the case of having no 
duplicates, the moisture flux patterns of the centroid are 
extremely similar to the original case. However, there is 
a redistribution of the dates across the clusters. For 
instance, the percentage of dates in cluster 1 is reduced 
to 23.3% from the original 37.1%. The wet spell cluster 
(cluster 3) accounted for only 74% of all wet spell days 
compared to the original 91% and 70.9% of all cool spell 
days compared to the original 100%. With 11 duplicates, 
the percentage of all dates in cluster 1 was reduced to 
24%, and the wet spell cluster accounted for 90.1% of all 
wet spell days and 96.4% of all cool spell days. Even 
though there is a redistribution of the dates, the overall 
trend in the distribution of the dates across the months 
remains similar (e.g. the month that a cluster peaks in). 
The physical interpretation of the moisture flux patterns 
remains unchanged. With this result, we have verified 
that increasing the number of duplicates up until equal 
weightage results in a better isolation of the spell days 
to a single cluster, justifying the necessity of duplication. 

Figure 4a represents the boxplots of the rainfall 
duration, rainfall quantity, rainfall intensity and daily 
maximum temperature of the dates in each cluster. In 
the case of cluster 3, the interquartile range of the 
boxplot for the rainfall duration is significantly higher 
than the rest of the clusters, consistent with the analysis 
that cluster 3 represents the wet phase of the northeast 
monsoon season. It is also the coolest period, as shown 
by the significantly lower interquartile range of the daily 
maximum temperature. In contrast, the distribution of 
rainfall duration and quantity for cluster 4 is lower than 
the rest of the clusters, clearly showing cluster 4’s 
association with the dry phase of the northeast monsoon 
season. Cluster 4 is also characterized by higher 
temperatures, with its interquartile range for the 
maximum daily temperature being the highest of all four 
clusters.  

Given that wet spells are anomalous events, it 
was of interest to investigate if they correspond to the 
cluster outliers. The cluster outliers are outliers based on 
their distance from the centroids, and if they also 
correspond to the rainfall and temperature outliers, then 
wet spells can be identified directly. Figure 4b shows the 
boxplots for the dates that correspond to the top 5% of 
outliers in each cluster. A comparison with figure 4a 
shows a large overlap between the boxplots for the 
outliers and those for the entire set of dates. This implies 
that the distribution of temperature and rainfall is 
independent of whether the dates are outliers or not. 
For instance, if a date is a cluster outlier, it is not possible 
to tell if this date has a high rainfall duration. Hence, one 
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cannot associate low temperatures and high rainfall 
duration with cluster outliers to identify spells. 

The large overlap in the interquartile range 
across the clusters for each quantity in the boxplots also 
shows that the clustering procedure does not cleanly 
separate the local rainfall and temperature. Therefore, 
even after assigning a date to a cluster, predicting its 
rainfall and temperature remains a difficult task. At best, 
probabilistic predictions of rainfall and temperature can 
be given based on their distributions in each cluster. 
Nevertheless, we can expect significantly higher rainfall 
and lower daily maximum temperature predicted for 
dates classified under cluster 3 due to the skewness of 
their distributions. The converse would hold for those 
dates in cluster 4. Overall, the maximum daily 
temperature is the best-separated quantity as the 
interquartile ranges overlap the least. This is likely due 
to the fact that T2M is highly correlated with the daily 
maximum temperature in Singapore, thus the clustering 

based on T2M directly helps to improve the clustering of 
the daily maximum temperature.  

CONCLUSION  
A climatology of cool and wet spells in 

Singapore based on appropriate thresholds and criteria 
applied to the local rain gauge and temperature records 
has been established. Most cool and wet spells occur 
during December and January. It has also been observed 
that many cool spell days are simultaneously wet spell 
days, showing the strong connection between them. We 
have attempted to use the K-Means clustering approach 
to understand the key variability of the regional moisture 
flux pattern during the northeast monsoon season and 
the connections to wet and cool spells observed in 
Singapore. We managed to identify the key moisture flux 
pattern associated with wet spells. Cool and wet spell 
days were isolated to a single cluster (cluster 3) and it 

Figure 4: (a) Boxplots of daily rainfall and temperature observations made in Singapore and grouped into the 4 clusters 
identified using the K-Means algorithm. The whiskers represent the values at 1.5 times the interquartile range (Q3-Q1) 
below the first quantile (Q1) and above the third quantile (Q3). White circles beyond the whiskers are regarded as 
outliers. (b) shows the same box plots for the furthest 5% of the data points from the centroid of each cluster. The 
large overlap in the boxplots here and in (a) implies that the cluster outliers judged based on their distances from the 
centroids does not correspond directly to rainfall and temperature outliers. 
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was thus reasoned that its associated moisture flux and 
the local 2-meter temperature fields can potentially 
serve as a good diagnostic for these spells. 

However, as only 17% of the days in this 
particular cluster are wet spells and there is a large 
spread in the distribution of rainfall duration, further 
investigation is needed before this approach can be 
applied in forecasting. One possible avenue of further 
enquiry would be to study the difference between the 
wet spell days and non-wet spell days in this cluster, such 
as by trying to identify distinguishing features between 
the atmospheric fields in the two groups. Further 
optimization of the clustering algorithm, and better 
selection of clustering variables could also be carried 
out. Other clustering algorithms may also be explored to 
improve the clustering, as the K-Means method is 
sensitive to centroid initialisation and performs less 
optimally if the representation of the data in the 816-
dimensional space is non-spherical.  

As the high correlation between T2M and the 
daily maximum temperature led to a better separation 
of the daily maximum temperature among the clusters, 
another possible area of investigation could be the 
identification of new atmospheric variables that are 
highly correlated with the observed rainfall duration to 
achieve a better separation of it. With a clearer 
separation in the distribution of the rainfall and 
temperature indicators across the clusters, regression 
models that help to map these atmospheric field 
variables to rainfall and temperature for each cluster can 
then be developed to predict these quantities and thus 
wet and cool spells from their definitions. This would 
lead to a more direct identification of wet and cool 
spells, allowing for the possibility of predicting them by 
analysing the forecast atmospheric field patterns from 
numerical weather prediction models. Some successes 
and limitations of the method have also been discussed.  
The results of this study can potentially pave the way for 
the development of statistical tools for predicting wet 
and cool spells in Singapore. 
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INTRODUCTION 
State-of-the-art seasonal forecasting systems 

from Global Producing Centres (GPCs) are known to 
suffer from large model drifts and systematic model-
dependent biases (Manzanas et al. 2019). These biases 
measure the correspondence between the average 
forecast and the average observed value of the 
predictand (Wilks, 2011). Re-forecasts of the past 20 to 
30 years are produced using the same model by GPCs to 
bias-correct these drifts in real-time forecasts. 
However, model biases still exist in the re-forecasts and 
post-processing is needed to make the raw re-forecasts 
more usable. 

Statistical post-processing has been a popular 
choice to reduce such biases, in order to improve the 
quality of probabilistic forecasts. They range from 
relatively simple methods such as bias adjustment (BA) 
and ensemble recalibration (RC) methods to more 
complex statistical downscaling techniques training on 
large-scale predictors. This letter will focus on BA and 
RC methods only. BA methods aim to generate the same 
mean and standard deviation of forecasts as the 
observations, whereas RC methods use the idea of 
inflation of the forecast ensemble mean and spread in 
order to resemble the observations as closely as 
possible. 

Overall, relatively good seasonal skill has been 
documented for the Southeast Asia (SEA) region, 
especially for the 2-metre temperature (t2m) 
parameter. This letter investigates whether further skill 
improvements in the t2m parameter can be achieved by 
applying three calibration methods (MVA, CCR and LR) 
to the March to May (MAM) period. This period was 
chosen as records have shown that the region 
experienced more heatwaves during this season. 
Therefore, accurate and reliable monthly/seasonal 
temperature predictions during this period would be 
useful for alerting the population to any impending 
heatwaves, or for predicting the coming of relief 
conditions.   

DATA AND METHODS 
DATA 

The ECMWF SEAS5 seasonal model (Johnson et 
al. 2019) was used in this study. This model is initialised 
on the first day of every month, producing 51 ensemble 
member forecasts up to 7 months into the future.  
Thirty-six years of re-forecasts from 1981 to 2016 are 
also produced on the same date as the forecasts, each 
consisting of 25 ensemble members. Re-forecasts are 
similar to forecasts, but are initialised for past dates 
using ERA-Interim reanalysis. These re-forecasts are 
used for assessing the model’s skill and calibrating the 
model against its climatology.  

ERA5 reanalysis (Hersbach and Dee, 2016) was 
used as the observational reference dataset for both the 
BA and RC calibration methods and also for the 
verification of raw/calibrated re-forecasts. ERA5 is the 
fifth generation reanalysis product from ECMWF, 
replacing ERA-Interim reanalysis which stopped 
production on 31 August 2019. It has a finer spatial 
resolution of 0.25° x 0.25°, is archived at hourly time 
steps and uses a more advanced data assimilation 
system than ERA-Interim (fourth generation).  

In this study, a one-month lead forecast from the 
ECMWF SEAS5 model was analysed with predictions 
initialised in February 2019, for MAM. However, only 
the March results will be discussed in this letter. In 
addition, a more recent re-forecast period of 1993 to 
2016 was used for calibration to avoid the long-term 
trend of climate change (Johnson et al. 2019) and also 
to be consistent with the calibration period used in the 
Copernicus Climate Change Service (C3S)’s multi-system 
seasonal forecast. Monthly-aggregated ECMWF SEAS5 
re-forecasts and ERA5 2-m temperatures (t2m) that 
have been bi-linearly interpolated from their native 
horizontal resolution to the common 1° regular grid 
were downloaded using C3S-API Climate Date Store 
(Climate Data Store, 2019) over the common period of 
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24 years (1993-2016). The domains for both datasets 
spanned Southeast Asia (90°E – 140°E, 10°S – 20°N).  

 

BIAS ADJUSTMENTS AND ENSEMBLE RECALIBRATION 

METHODS 
BA methods adjust the raw model outputs 

towards a corresponding observational reference to 
make them compatible with the local climatology, 
regardless of the temporal pairing between the 
predictions and the observations. In the BA domain, 
methods range from simple adjustments in the 
mean/variance (MVA) to more complex quantile 
mapping (to adjust higher-order moments or non-
normal probability density function). RC methods, on 
the other hand, transform the raw model outputs by 
temporal pairing of re-forecast ensemble means and 
the corresponding observations. Techniques for RC 
methods range from relatively simple algorithms such 
as climate conserving recalibration (CCR) to more 
general ensemble model output statistics (EMOS) using 
linear regression (LR) or non-homogeneous Gaussian 
regression.  

This study uses a framework of ready-made 
statistical packages in R: ‘hyfo’ (Xu, 2015), and 
‘climate4R’ and ‘calibratoR’ (Santander Meteorology 
Group, 2019). Jupyter Notebook (utilising Python) was 
used for assessing and extracting data, statistical 
computations and data analysis. The ‘calibratoR’ 
package consists of the BA and RC calibration methods 
for the seasonal re-forecast dataset, and the selected 
methods were mean/variance adjustment (MVA), 
climate conserving recalibration (CCR) and linear 
regression (LR). Detailed implementations of the three 
methods can be found in Appendix A. 

All three methods of calibration (Manzanas et 
al, 2019) were applied under a leave-1-year-out cross 
validation (LOOCV) setting to avoid artificial skill due to 
small sample sizes (24 years of data in our study). Cross-
validation simulates prediction for unknown data by 
repeating the fitting procedure on data subsets, and 
then testing the predictions on the data portions left out 
of each of these subsets. For example in LOOCV, if there 
are n data points in the original sample, then n-1 
samples will be used to train the model, with the 
remaining data point used as the validation (testing) set. 
This procedure is repeated n times. 

The parameters in each calibration method 
were first determined based on the complete ensemble 
information and then applied to calibrate each 
individual ensemble member. 

 

VERIFICATION SCORES 
A good quality probabilistic forecast would 

illustrate close correspondence between the forecast 
conditions and the observed conditions (Murphy, 1993). 
Verification scores are used to determine different 
aspects of forecast quality, such as discrimination and 
accuracy. These two aspects of forecast quality were 
chosen for this study to verify the skill of the raw and 
calibrated re-forecasts against ERA5. 

The first forecast quality, discrimination, 
measures the ability of the forecasts to distinguish 
between an event and the corresponding non-event, 
which can be described in terms of hit rate and false 
alarm rate respectively. Hit rate, also known as 
probability of detection, occurs when an observed “hit” 
event is correctly forecast. False alarm rate, also known 
as the probability of false detection, occurs when an 
observed “hit” event is incorrectly forecast as a “no hit”. 
Discrimination of the raw re-forecasts was assessed 
using the Relative Operating Characteristic (ROC) curve, 
by plotting the results of hit rate against false alarm rate 
between the forecasts and observations (Kharin and 
Zweirs, 2003). The verification score was measured by 
the area under the curve, computed as a scalar value 
known as the ROC score. 

The ROC score ∈  [0,1], where 1 signifies a 
perfect score in discrimination, while a score of more 
than (less than) 0.5 represents better (poorer) skill of 
the forecast over the climatological reference. In 
addition, the skill of the calibrated re-forecasts was 
measured using the associated ROC Skill Score (ROCSS): 

 

ROCSS = ோைೌିோைೝೌೢ

ଵିோை ೝೌೢ
                   (1) 

where ROCSS ∈ [-∞,1], 𝑅𝑂𝐶௪  is the ROC Score for 
the raw re-forecast, and 𝑅𝑂𝐶  the ROC Score for the 
calibrated re-forecast. ROCSS is based on tercile 
categories (above normal, near normal and below 
normal) that are independently computed for the re-
forecasts and observations, effecting a bias correction 
in the forecasts, and making the ROCSS insensitive to 
biases as they are independent of calibration (Wilks, 
2011). 

The second forecast quality that will be 
analysed, accuracy, is a measure of the overall 
correspondence between forecasts and observations. 
The accuracy of the raw re-forecasts was assessed using 
the Continuous Ranked Probability Score (CRPS). CRPS 
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is a quadratic integral measure of the difference 
between the forecast cumulative distribution function 
(CDF) and the empirical CDF of the observation 
(Hersbach, 2000), expressed by: 

 

CRPS = ∫ ( Fୡୱ୲(y) − F୭ୠୱ(y))ଶ dy
ஶ

ିஶ
  (2) 

where CRPS ∈ [0,1]. 𝐹௦(𝑦) is a cumulative-probability 
step function going from 0 to 1 at the point where the 
forecast variable y equals the observation. Figure 1(b) 
illustrates how three different Gaussian probability 
distribution functions (PDF) in Figure 1(a) are expressed 
as CDFs, and compared against observations. A smaller 
area enclosed between the CDF and the step-function 
represents better correspondence, and thus, better 
CRPS. The value 0 denotes perfect score, thus, a lower 
(higher) score would mean better (poorer) forecast skill. 
CRPS is sensitive to biases unlike the ROC score, as it 
takes into account the continuous distribution function 
and does not divide the ensemble re-forecasts into 
probabilities of categorical events. The associated skill 
score, (CRPSS) is computed using the bias-corrected 
(calibrated) re-forecast’s CRPS to verify against the raw 
re-forecast’s CRPS (taken as the reference score): 
 

CRP Skill score (CRPSS) = 1 -  ୈୗౙౢ

ୈୗ౨౭
  (3) 

where CRPSS ∈ [-∞,1]. ROCSS and CRPSS values above 
(below) 0 indicate the particular calibration improves 
(degrades) the raw re-forecast. These skill scores 
provide an objective and useful gauge of any skill 
improvements by the calibration.  

RESULTS AND DISCUSSION 

Figure 2 shows the computed March mean 
temperature bias for the 1-month lead ensemble mean 
of the raw and calibrated (using the MVA method) 

SEAS5 re-forecast model against ERA5. In general, the 
raw re-forecast model displays negative bias (colder) 
over land, as expected based from similar results by 
Manzanas et al. 2019 for this region, and positive bias 
(warmer) over sea. Mean temperature bias values have 
been effectively reduced by the MVA method as values 
are close to 0 in Figure 1. The biases were reduced 
because all calibrations are applied under the LOOCV, 
which repeatedly fits the calibration re-forecasts using 
training sets that contained n-1 samples, almost as 
many as there are in the entire dataset for testing. Plots 
of the other two methods (CCR and LR) are not shown 
here as they produced similar results to the MVA 
method. The maximum and minimum ‘mean 
temperature bias’ values are presented in Table 1, 
highlighting that further calibration is needed to correct 
the raw re-forecast model predictions. 
 
 

 

Bias Min. (°C) Max. (°C) 
Raw -3.00 1.61 

Calibrated MVA -0.0269 0.0162 
Calibrated CCR -0.0300 0.0172 
Calibrated LR -0.0298 0.0172 

Table 1 Calculated mean minimum and maximum 
temperature biases for raw and calibrated temperature 
re-forecasts based on the SEAS5 model. 

Figure 2 Raw (left) and MVA calibrated (right) mean temperature biases based on the ECMWF’s SEAS5 model 
from ERA5 reanalysis reference.  The biases are expressed in degrees Celsius (°C). 

Figure 1 Schematic diagram of the continuous ranked 
probability skill score (Wilks, 2011): (a) shows three 
forecast PDFs and (b) illustrates their corresponding 
CDFs, with the step-function CDF for the observation. 
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Figure 3 Above-normal Tercile (column 1) and Below-normal Tercile (column 2) for ROC Score of the raw re-
forecast (row 1) and ROC Skill Score of calibrated re-forecasts using MVA, CCR and LR method respectively 
(rows 2-4). 

Above Normal Below Normal 
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Figure 3 illustrates ROC scores and skill scores for 
the raw and calibrated re-forecasts in the Southeast 
Asia region. The plots shown here are tercile-based 
probabilistic predictions, leaving out the near-normal 
tercile for brevity. Based on the performance of skill, 
most areas of the raw re-forecast model (row 1) 
achieved relatively good skill, as the majority of the ROC 
scores were > 0.5. This suggests that the raw model re-
forecasts can be considered skilful. 

On the other hand, the calibrated re-forecasts 
(rows 2-4) did not improve discrimination based on their 
ROC skill scores. The scores in most areas of Southeast 
Asia degraded after calibration, with ROCSS < 0. This 
was more evident for the RC (CCR, LR) methods than for 
the BA (MVA) method. The average ROC Skill Score 
achieved for MVA, CCA and LR-calibrated re-forecasts 
were all negative, -0.14, -0.21 and -0.22 for the above-
normal tercile respectively, and -0.14, -0.20 and -0.21 
for the below-normal tercile respectively. 

There are some possible reasons for the poor 
skill reflected by ROCSS for the calibrated re-forecasts. 
Firstly, it could be due to the shorter re-forecast period 
(24 years) used for this study. A longer re-forecast 

period has been shown to result in a slight improvement 
in ROCSS (Manzanas et al. 2019). It would also mean a 
larger number of cross-validation points, resulting in a 
more robust estimate of skill. However, computing for a 
longer re-forecast period can be expensive and is hence 
not always feasible. Secondly, ROCSS is insensitive to 
biases. These biases are not reflected in the ROC curve 
because the actual numerical value of the forecast 
probabilities are not considered in the computations for 
the ROC curve, and are only used to sort the elements 
of the joint distribution (Wilks, 2011). 

Overall, among the calibration methods, the 
MVA method displayed the least degraded ROC Skill 
Score. 

Figure 4 shows the CRPS and its skill scores for 
the raw and calibrated re-forecasts respectively. The 
raw re-forecasts show almost close to perfect 
correspondence over sea areas as shown in Figure 4(a). 
However, there is a negative correspondence over land, 
as the CRPS for most land regions displays a score of 
approximately 1 or slightly more. This is due to the 
negative model temperature bias over the land (shown 
in Figure 2). 

Figure 4 CRP Score plot of raw re-forecast (row 1, column 1) and CRP Skill Score plot of calibrated re-forecasts 
using MVA, CCR and LR method respectively (row 1 column 2, row 2 column 1 & 2). Land-sea mask (in grey) is 
applied for only the calibrated re-forecast plots to mask out the sea region.   
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After calibration, the re-forecasts displayed 
much better skill over land than over the sea. Hence, we 
decided to focus on studying the skill over land only, by 
applying a land-sea mask on the gridded calibrated re-
forecasts as shown in Figure 4. Approximately 23% of 
the grids are considered land within our domain. The 
red (blue) areas on land imply that the calibration 
method degraded (improved) the raw model re-
forecast. All three calibration methods showed similar 
CRPSS skill improvements for regions like Singapore, the 
Philippines, Malaysia, Sumatra and Borneo. However, 
some parts of the northern SEA region (Vietnam, Laos, 
Cambodia, and Thailand) displayed insignificant CRPSS 
skill improvements (scores were close to or less than 0). 
A similar observation was made for the northern SEA 
region where the ROC scores (above/below) were low 
to moderate. This could be due to the predictability limit 
in the current ECMWF-SEAS5 model at this time of the 
year, which cannot be compensated for by the 
calibration methods used in this study. 

The percentage of total land area where the 
CRPSS scores were greater than 0 was also investigated. 
On average, 71% (66%, 64%) of the total land area 
indicated an improvement in CRPSS using the 
calibration method of MVA (CCR, LR). Overall, among 
the calibration methods surveyed, the MVA method 
displayed the highest percentage of CRPSS 
improvement over land regions. 

 

CONCLUSION 

This study explored three calibration methods 
(MVA, CCR and LR) for an ensemble re-forecast of 2-
metre temperature over Southeast Asia using bias-
adjustments and ensemble recalibration. All calibration 
methods effectively reduced the model’s mean 
temperature biases and improved the corresponding 
bias-sensitive metrics using CRPS/CRPSS, which is 
crucial for end-users to compute specific climate indices 
based on absolute values/thresholds. As a result of the 
LOOCV setting, bias-insensitive verification metrics like 
the ROC Score and its corresponding skill score 
indicated more degradation than improvement in our 
calibrated re-forecast. 

Overall, the MVA method displayed the best 
performance based on forecast discrimination (ROC) 
and accuracy (CRPS). One of the potential advantages of 
using the MVA method (which is a subset of BA 
methods) is its suitability for daily timescales. The daily 
data could be used to compute specific indices (e.g. heat 
waves, length of growing index, and thermal comfort 

index), or for various sectoral applications (e.g. health, 
agriculture, water resources, and energy). 

Future work could extend the study to other 
times of the year (different seasons) and using other 
parameters like precipitation for more robust 
comparisons of different calibration methods. There is 
also potential scope to use bias-adjustment methods in 
sub-seasonal models (on a timescale of 2 weeks to 2 
months) and for a combination of calibrated multi-
model ensembles.   
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APPENDIX  
The following notations are used in the 

subsequent equations for each calibration method:  
𝑦,௧ and 𝑦′,௧  are the original and calibrated values for 
the ensemble member m at the time t (month), 𝑦ො  is the 
average of the ensemble mean (𝑦௧) over all times t, 𝑜ො  is 
the mean of the observations over all times t, σ is the 
standard deviation of the complete ensemble forecast 
and σ  is the standard deviation of the observations. ρ 
is the correlation between the ensemble mean and the 
observational reference. 

 

MEAN/VARIANCE ADJUSTMENT (MVA) 
The mean and variance of the ensemble 

forecast is adjusted to the observations via this formula 
(Torralba et al. 2017): 

𝑦′,௧ = (𝑦,௧ -  𝑦ො)



 + 𝑜ො   (4) 

Monthly mean anomalies are calculated by subtracting 
the ensemble mean, 𝑦,ෝ  of the monthly averages, from 
the monthly average 𝑦,௧ of each forecast for each year 
and member. The new monthly mean (calibrated value), 
𝑦,௧

ᇱ , is calculated by multiplying the monthly mean 
anomaly by the ratio of the standard deviation of the 
reference observations to the standard deviation of the 
ensemble members, and adding the climatological 
mean 𝑜ො  of the reference dataset (observations). In this 
equation, it is assumed that both the reference 
observations and re-forecasts are approximated well by 
a Gaussian (normal) distribution. 
 

CLIMATE CONSERVING RECALIBRATION (CCR) 

𝑦,௧
ᇱ  = ρ ఙ

௦.ௗ.(௬ത)
 𝑦ത௧ + ට1 − ρଶ ఙ

ఙ
൫𝑦,௧ − 𝑦ത௧൯  + 𝑜ො   (5) 

Also known as variance inflation, this method modifies 
the predictions so that they have the same interannual 
variance as the observational reference at every grid 
point for all times t, by scaling the average of the 

ensemble mean of the forecast with a factor α = 

ρ
ఙ

௦.ௗ.(௬ത)
 and correcting the underestimation or 

overestimation of the ensemble spread by scaling it 

with a factor of β = ට1 − ρଶ ఙ

ఙ
,  while preserving 

their interannual correlation (Doblas-Reyes et al. 2005; 
Weigel et al. 2009, Torralba et al. 2017) such that the re-
forecast is identical to the observation climatology. The 

inflation in the ensemble spread ( 𝑦,௧ − 𝑦ത௧ ) by the 
factor β quantifies the uncertainty of the actual 
outcome and increases the reliability of the predicted 

probabilities. Factors α and β are found under 
constraints that 1) the standard deviation of the inflated 
prediction is the same as that for the observation, and 
2) the forecast signal after the inflation is made equal to 
the correlation of the ensemble mean with the 
observation. 
 

LINEAR REGRESSION RECALIBRATION (LR) 
This method performs a linear regression 

between the ensemble mean and the corresponding 
observations: 𝑜௧ = α + β𝑦ത௧ + ϵ, where α is the intercept, 
β is the slope and ϵ is the residual error. It is similar to 
CCR, where the ensemble mean and ensemble spread 
are each being scaled by a particular factor, in order to 
achieve similar results for predictions and observations. 
To correct the forecast variance, the standardized 
anomalies are rescaled by the standard deviation of the 
predictive distribution (re-forecast) from the linear 
fitting, calculated using: 

𝑦,௧
ᇱ  = α + β𝑦ത௧ + ɣ𝒕൫𝑦,௧ − 𝑦ത௧൯  (6) 

where  ɣ௧ = 𝑠𝑡𝑑൫ϵ௧൯ඨ1 +
ଵ


+

൫௬ ି௬ത൯
మ

(ିଵ)௩(ϵ್ೞ)
, 

ϵ௧ and ϵ௦ are the residuals from the regression and 
the observations respectively and n is the number of 
samples used. 
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GLOSSARY 
 
  
 
 
 
Climate Conserving Recalibration (CCR): A statistical technique that corrects for biases in a dataset, where the correction 
varies in time (similar to LR). 
 
Climate Model Intercomparison Project (CMIP): An international experimental framework set up by the World Climate 
Research Programme (WCRP) for the studying and assessment of the output from the many different global climate 
models (GCMs). It allows, among other things, the output of the many different climate models to be made publically 
available in a standardized format. 
 
Cold surges: Strong northeasterly winds over the South China Sea that bring increased convection over the Maritime 
Continent during the Northeast Monsoon. 
 
Continuous Ranked Probability Score (CRPS): A score that assesses the difference between what was observed and the 
probabilistic forecast. The skill score (CRPSS) compares the CRPS from the model with some reference, such as 
climatology. 
 
CPC Morphing Technique (CMORPH): A gridded observational rainfall dataset based on satellite imagery. 
 
European Centre for Medium-Range Weather Forecasts (ECMWF): A research institute and operational numerical 
weather prediction centre dedicated to improving forecasts in the 7 to 15-day window. It also provides additional 
forecasts, including those at the subseasonal to seasonal timescale. 
 
Global Climate Models (GCMs): Models that use mathematical equations to describe the climate of the entire globe.  
 
Global Producing Centres (GPCs): Centres that produce forecasts that cover the entire globe. Certain GPCs have been 
designated by the World Meteorological Organization as WMO Global Producing Centres of Long-Range Forecasts that 
adhere to required international standards.  
 
Intergovernmental Panel for Climate Change (IPCC): An intergovernmental body of the United Nations for assessing the 
science related to climate change.  
 
K-means clustering: A technique to partition a dataset into a certain number (k) of clusters.  
 
Linear Regression Recalibration (LR): A statistical technique that corrects for biases in a dataset, where the correction 
varies in time and assumes there is a linear relationship between the observations and the dataset to be corrected.  
 
Mean/Variance Adjustment (MVA): A statistical technique that corrects both the mean (average) bias, as well as error 
in the variance.  
 
Moisture flux: The rate of flow of moisture (e.g. specific humidity). 
 
Python: A general purpose programming language, in which code readability is important. 
 
Re-forecasts: Similar to forecasts, but run for past dates and often uses reanalysis data as input. Re-forecasts are used 
in subseasonal and seasonal forecasting. 
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Regional Climate Models (RCMs): Similar to GCMs, but run for a region (or limited area) in order to achieve a finer 
resolution.  
 
Relative Operating Characteristics (ROC) curve: Used to determine if a forecast is different (or able to discriminate) 
between instances when an event happens and when it does not happen (e.g. above normal temperature). The skill 
score (ROCS) compares the area under the ROC curve from the model with some reference, such as climatology. 
 
Representative Concentration Pathways (RCPs): Greenhouse gas concentration trajectories (variations with time) that 
were adopted by the IPCC in 2014. 
 
Singapore Variable Resolution (SINGV): MSS’s integrated numerical weather prediction system, developed jointly in 
collaboration with the UK Met Office 
 
Tropical Rainfall Measuring Mission (TRMM): A gridded rainfall observation dataset based on satellite imagery. 
 
Unified Model (UM): A numerical model of the atmosphere developed by the UK Met Office that is used for both 
weather and climate applications.  
 
Urban Heat Islands (UHIs): An urban or built up area that is considerably warmer than the surrounding areas.  
 
V2, V3: Singapore’s 2nd and 3rd National Climate Change studies, respectively.  
 
Western Maritime Continent (WMC): The western part of the Maritime Continent, which includes Singapore, Peninsular 
Malaysia, Sumatra, as well as parts of Borneo and Java. 
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