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Background 

 SEACAM’s regional climate modelling experiment provides high-resolution (25 km) 

information on future climate change projections for the S.E. Asia region up to year 

2100. This was done by dynamical downscaling of 5 selected members of the Met 

Office HadCM3Q ensemble and the ECHAM5 model (from the Max Planck Institute 

for Meteorology) using the Met Office PRECIS model {§4.1}. The selection of members 

from the HadCM3Q ensemble was done by assessing their ability to simulate the major 

features of S.E. Asian climate and capturing the broadest range of future projections 

for temperature, monsoon characteristics and precipitation {§4.3.4}. 

 

 Model simulations were evaluated against appropriate observation datasets available, 

which includes APHRODITE and CRU {§4.5}. In instances where direct observations 

were not accessible, the ERA-40 reanalysis was used to compare against the 

simulations. The ERA-40 reanalysis was also used to drive the PRECIS model and the 

downscaled reanalysis outputs were also compared against the model simulations to 

assess the performance of the regional climate model on its own, without (or with 

minimal) errors coming from the driving global climate model data {§4.3.4}. 

 

 A literature survey was carried out to identify the scientific issues and gaps relevant to 

the region {§2} and a questionnaire was also conducted to gather the needs of the end-

users of climate projections in the region {§3}. These two surveys helped inform the 

formulation of the regional downscaling experiment in terms of its configurations and 

analyses. 

Evaluation of Model Simulations 

 Evaluations were carried out for temperature and precipitation in the annual cycle, 

their spatial distribution, and selected extreme indices. In addition, monsoon 

circulations and the associated precipitation patterns were also analysed {§5.2}. 

 

 In the evaluation of the seasonal temperature cycle, downscaled climate model 

simulations generally performed well by capturing the observed temperature peaks 

and dips across the year, especially for the Mainland Southeast Asia. Overall biases 

(warm or cold) range between 1.0 to 2.0°C {§5.3.1}.  

 

 The seasonal precipitation cycle was not simulated as well, as expected due to the 

more challenging nature in predicting precipitation in this region. Nevertheless, the 

RCM simulations generally captured the rainfall cycle better for places with 

pronounced precipitation seasonality, such as in the northern and southern parts of 

the region. In the near equatorial regions where the seasonality is smaller, simulations 

tended to be more chaotic, but the (wet) biases were relatively smaller {§5.3.2}. 

 

Executive Summary 



 When evaluating precipitation simulations against observations, the choice of 

observations (e.g. between APHRODITE and CRU) can have a significant impact on 

the outcomes of the analyses. Caution needs to be exercised when making conclusions 

about biases in simulations as these could be severely influenced by deficiencies in 

observational datasets {§5.3.2}. 

 

 Analyses of mean regional temperature simulations by seasons reveal that these 

tended to have biases in the range between ±4°C with considerable spatial and 

seasonal variations. The biases were larger than the annual temperature cycle biases as 

these had not been averaged in space. In general, warm biases were observed in the 

simulation in the early part (Mar – May) of the calendar year while cool biases were 

observed in the later part (Sep – Nov). This is broadly consistent with the biases shown 

in the analyses of the annual cycle {§5.4.1}. 

 

 Spatial biases structure of the seasonal maximum temperature and seasonal mean 

temperature were similar with generally warmer temperatures simulated in the 

continental region of S.E. Asia, and cooler temperatures simulated in the maritime 

region. For the seasonal minimum temperature, generally warm biases were observed 

everywhere in the region and these were seasonally invariant in the southern half of 

the domain {§5.4.2}. 

 

 Relative to temperature, precipitation patterns by nature are more sporadic and less 

uniform. As a result, bias patterns of seasonal rainfall simulations showed more 

location-specific variability. Overall, moderate wet biases of up to 40% were observed 

except for the western mainland S.E. Asia where dry biases were observed. The wet 

biases were stronger (up to 80%) in certain seasons (DJF and MAM) and certain 

locations (Cambodia and Central Borneo). As the annual cycle analyses have shown 

{§5.3.2}, these biases could partially be due to under-representation of rainfall in the 

observational dataset, APHRODITE {§5.5}. 

 

 The RCM simulations generally demonstrated good skill in simulating the spatial 

patterns of the average circulations (or wind flow) patterns for both the northeast 

(boreal winter) and southwest (boreal summer) monsoon seasons. Average 

precipitation patterns during monsoon seasons were also generally well-captured. 

Extreme precipitation (95% of monsoon seasonal rainfall), however, was generally 

underestimated and varied depending on locations and seasons {§5.6 and 5.7}. 

 

 Extreme indices of precipitation and temperature were also analysed. Large biases of 

Rx1day (annual maximum 1-day rainfall) were generally found in high-elevation places. 

Otherwise, spatial structures of Rx1day were generally well-captured by model 

simulations. Similar characteristics were observed in the simulations of Rx5day (annual 

maximum consecutive five days rainfall). For CDD (consecutive dry days), the models 

simulated it well, reasonably capturing both the spatial patterns and the magnitude of 

the CDD {§5.8}. In terms of capturing the historical trends, the RCM was able to 



reproduce the sign of the trends (for Rx1day and Rx5day) and the inter-annual 

variability of the observed rainfall indices (for Rx5day and CDD){§5.8.4}. 

 

 Both the mean annual minimum average daily temperature (TMn: coolest day of the 

year averaged over many years) and the mean annual maximum average daily 

temperature (TMx: warmest day of the year) were well simulated. The simulations 

were generally warmer of up to only 2°C for TMn, and around 5°C for TMx in isolated 

locations {§5.9}. Historical trends in the extreme temperature were also captured by 

the RCM, especially in the TMx {§5.9.4}. 

Model Projections 

 Model projections are made for the mid-century (also “mid-term”) for the 30-year 

period between 2031 and 2060 and also for the end-century (also “long-term”) for the 

30-year period between 2071 and 2100. For all projections, the changes are reported 

relative to the baseline period of 1971-2000 {§6}. 

 

 Annual cycle change in temperature for the mid-term projections ranged around 2°C, 

and for the long-term around 4.0°C. These were statistically significant projections 

with fairly consistent changes registered across the year. In contrast to temperature 

projections, the projections for precipitation showed a lot more variations across 

countries and seasons which lead to difficulties in interpretation of the annual cycle 

plots. There were, however, instances of statistically significant projections in the 

annual precipitation cycle change observed over specific locations and seasons {§6.2}. 

 

 Across the region, similar projection ranges (to the annual temperature cycle) were 

observed for the gridded seasonal mean temperature for the mid-century (2-4 °C 

warmer) and end-century (3-5°C warmer). Spatial warming patterns in the seasonal 

minimum and maximum temperatures closely resemble that of the seasonal mean, but 

towards the end-century the warming rate of the seasonal minimum temperature is 

slightly lower than the mean. Coupled with the higher warming rate of the seasonal 

maximum (relative to the seasonal mean) for the same period, the temperature 

difference between the maximum and minimum is expected to widen, on average, 

during the end-century {§6.3 - 6.5}. However, projections for diurnal temperature 

changes (maximum minus minimum) indicate large spatial and seasonal variations 

{§6.6}. 

 

 Unlike for temperature, changes in rainfall projections show large spatial and seasonal 

variations. Generally, the projections show drier climate over the sea and wetter 

climate over land. The land-sea contrast is more obvious towards the end of the 

century. In all of the HadCM3Q projections, drier climate is projected over most areas 

during boreal winter except central mainland S.E. Asia. However, wetter climate was 

projected south of the equator in ECHAM5. Generally, inter-model agreement is high 

except during winter (DJF) {§6.7}. 

 



 During the boreal summer monsoon (JJAS), generally more rainfall is projected in the 

northern part of the region (approximately from 20°N northward), whereas drier 

conditions are projected for the Maritime Continent. Similar signals are expected for 

both the mid- and end-century projections, but with the end-century  showing larger 

magnitude of changes than the mid-century. These projections are accompanied by 

end-century strengthening of westerly winds at the 850 hPa level. For the boreal winter 

monsoon (DJF), the scale of projected precipitation changes (e.g. increases over land) 

for extremes is not as significant as the summer monsoon. In contrast to HadCM3Q 

projections, ECHAM5 projections do not provide the same signs of rainfall changes for 

both mid-century and end-century periods {§6.8 - 6.9}. 

 

 For extreme rainfall indices, Rx1day and Rx5day for the end-century are projected to 

increase in areas north of the 15°N latitude. On the other hand, all projections show an 

increase in CDD (i.e. longer dry spells) south of 15°N latitude in both time periods. For 

these projections, model agreement tends to be good {§6.10}. 

 

 For extreme temperature indices, a 1-3°C change is projected for most land regions of 

S.E. Asia across all RCM projections for the mid-century and a 3-5°C change for the 

end of the century. The magnitudes of change for these two time periods are 

comparable across all four indices (TXx, TNx, TMx, and TMn) considered. The 

projection ranges are also similar to that of the annual cycle and seasonal temperature 

projections for the two periods {§6.11}. 

 



 

1. Introduction 

1.1. The geography and climate of Southeast Asia 

Southeast Asia (S.E. Asia, henceforth) is an area of major river systems, tropical forests, 

mountain ranges and over 20,000 islands. In total, the region contains 173,000 kilometres of 

coastline, with many major cities and associated economic activity located in coastal areas. 

The region spans 3,300 kilometres from north to south and 5,600 kilometres from east to west. 

It rests between the waters of the Indian Ocean and the Pacific Ocean, and contains a 

mainland section to the north (Cambodia, Laos, Thailand, Peninsular Malaysia, and Vietnam – 

henceforth the mainland S.E. Asia) and a maritime section to the south (Brunei, the 

Philippines, Singapore, East Malaysia, East Timor, and Indonesia – henceforth the Maritime 

Continent) (see Figure 1.1).  

It is also a region of the world which is 

expected to experience serious, negative 

impacts of climate change due to its fast-

growing and urbanising population, as 

well as the reliance of many of its people 

on climate-sensitive sectors such as 

agriculture, fisheries and natural 

resources.   

S.E. Asia is annually affected by extreme 

weather events, particularly tropical 

cyclones, droughts and floods. Large areas 

of S.E. Asia are prone to flooding, and 

much of the region is heavily influenced 

by monsoon systems which often bring 

extreme weather. As the climate warms, 

these types of extreme weather events are 

projected to increase in frequency and intensity, threatening the lives and livelihoods of 

millions of people (Yusuf & Francisco, 2009).  

  

Figure 1.1: Map showing the continental section of S.E. 
Asia on the top-left and the maritime section to its 
south and east. (Image credit: Google Map) 
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1.2. The impacts of climate change on 

S.E. Asia 

The impacts of climate change will not be evenly 

distributed across the region. Differences in economic 

level, population density, technological capacity, and 

urbanisation mean that some regions may experience 

harsher impacts than others. Given the potential 

negative impacts, governments and policy-makers in 

the region need reliable information to inform 

decisions made and to respond to a changing climate 

in a way guided by the best science available. 

However, S.E. Asia has not been sufficiently studied to 

meet this need, especially in comparison with other 

major regions of the world, e.g. North America (the NARCCAP project1) and Europe (the 

ENSEMBLES project2). 

The need for further in-depth research, especially the need for more climate change 

projections for S.E. Asia, was the main driving force in the creation of the SEACAM (S.E. Asia 

Climate Analysis and Modelling) framework. 

1.3. The SEACAM experiments 

1.3.1. Generating future climate change scenarios 

SEACAM brought together representatives from 8 of the 10 Association of South East Asian 

Nations (ASEAN) member countries at a planning workshop in June 2012 in Singapore. At that 

meeting, the need for a dedicated project for S.E. Asia using a regional climate model (RCM) 

driven by several global models was 

discussed. Those in attendance decided to 

share the work load required to run these 

models (as RCM runs are computationally 

expensive and require large amounts of 

storage space). Six 150-year PRECIS (Jones, 

et al., 2004) regional climate model 

experiments, nicknamed the DURIAN3 

experiments, were designed over a 

common domain which encompassed all 

ASEAN member countries (see section 4.2 

details on domain), and the responsibility 

for running one or more of the six experiments was voluntarily chosen by participants. 

Following the workshop, the common domain was further refined in a series of discussions in 

                                                      
1
 https://www.narccap.ucar.edu/ 

2
 http://www.ensembles-eu.org/ 

3
 DURIAN is short for Downscaling for Useful Regional Impacts AssessmeNt. 

The need for further in-depth 

research, especially the need 

for more climate change 

projections for S.E. Asia, was 

the main driving force in the 

creation of the SEACAM (S.E. 

Asia Climate Analysis and 

Modelling) framework. 

Trainers and participants at the June 2012 workshop in 
Singapore. 
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which SEACAM participants corrected the land representation, to ensure that the small 

islands were represented in the regional model as land points, as far as practically possible. 

In Phase 2 of SEACAM was initiated, in which current and newly recruited participants of 

SEACAM would jointly analyse the 900 years (150 years times six experiments) of climate 

model output data from the DURIAN experiments. Funding for the SEACAM phase 2 was 

provided by CCRS-MSS, the MOHC and the U.K. Foreign and Commonwealth Office 

(UKFCO).   

1.3.2. Analysing regional climate model outputs 

Phase 2 began with a workshop in Phnom Penh, Cambodia in August 2013. Almost all of the 

participants from the initial SEACAM project were in attendance, with approximately ten 

additional participants, including two from a further ASEAN member country (Cambodia).  

During the five days of the workshop, participants voluntarily arranged themselves into four 

groups, who would carry out the foundational analysis of the DURIAN experiments in areas of 

greatest relevance to policy-makers as well as to provide a basis for any specific future research 

using data from the DURIAN experiments. The four areas were annual cycle of temperature 

and precipitation; mean temperature and precipitation; circulation patterns during the 

monsoon seasons; and extreme precipitation and temperature. 

Participants spent the five 

days analysing the 

relevant data in these four 

areas and the production 

of plots and text 

describing the results. 

Following the workshop, 

team leaders of the four 

areas were responsible for 

coordinating further 

analyses, including the 

production of plots and 

written results during the 

four month period 

between this and the subsequent workshop. 

The subsequent workshop, in February 2014 at CCRS-MSS in Singapore, brought together 

almost all participants again to review the work done since the workshop in Phnom Penh and 

finalise the report. Several experienced climate scientists joined the workshop in order to 

provide guidance on the analyses, review the work done to-date, and review the final product. 

  

Trainers and participants at the August 2013 workshop in Phnom Penh, 
Cambodia. 
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The contents of this SEACAM report come from the efforts of over 30 climate researchers from 

the region’s National Meteorological and Hydrological Services (NMHSs) and research 

institutes, all but five of which are from ASEAN member countries, and some of whom are 

either early career scientists or postgraduate researchers.  The production of the report has 

been a learning experience for all involved and has increased their capacity in analysing 

climate model output data and summarising the results, a skill which is important for all 

participants and one which is of increasing importance across S.E. Asia, as the issue of a 

changing climate in the region 

becomes more of a priority. 

SEACAM has furthermore led to 

closer contacts between climate 

researchers in the region, 

especially at the NMHSs.  Closer 

cooperation will enhance future 

research as more scientists are 

able and willing to review the 

work, and it will also provide 

precedent for future collaborative 

research projects initiated by other 

institutes across S.E. Asia, such as 

the S.E. Asia CORDEX project4. 

                                                      
4
 http://www.ukm.my/seaclid-cordex/ 

Trainers and participants at the February 2014 workshop in 
Singapore. 



 

2. Literature Review 

2.1. Need for higher resolution climate projections 

The primary goal of SEACAM Phase 1 (June 2012- June 2013) was the production of climate 

projections for S.E. Asia. Creation of climate projections requires climate models to be run 

into the future. Since climate models were first created in the 1960s, a plethora of global 

climate models (GCMs) have been run, simulating the Earth’s atmosphere, ocean and other 

important processes. The computational expense of simulating the atmosphere and ocean in 

three dimensions with a climate model means that the resolution is constrained: if the 

resolution is too high the GCM takes too long to run to be of any use. 

A way to address the limitations of GCMs is to 

downscale them using higher resolution RCMs. Use of 

high resolution RCMs to dynamically downscale 

coarser resolution global climate models has been 

shown on numerous occasions to add value to and/or 

improve upon the realism of the global models 

(Jones, et al., 1995). This is mainly due to the fact that 

regional climate is most influenced by the local land 

and surface features (e.g. mountains and coastlines) 

which the global models cannot explicitly resolve. 

The coarser the global model resolution, the 

“smoother” the land-surface representation becomes 

(as each grid box in the model is by definition an 

area-average representation of the land in the whole 

grid box). This process can yield unrealistic local 

climate information in global models, even if the 

large scale climate is (on average) well represented. 

The characteristics of regional climate for S.E. Asia are determined by local weather systems 

which bring in heat, moisture and momentum into the S.E. Asian region. The definition of 

regional climate takes into consideration the mean climate, the variance (how the climate of 

the region naturally varies), the co-variance (how climates of nearby regions affect climate) 

and the extremes (impactful weather events which are very high/very low and rare).  

As S.E. Asia contains very complex terrain, the region can in principle benefit from the use of 

RCM simulations to provide climate scenarios. A review of the climate change related 

scientific literature reveals a lack of regional model downscaling experiments over S.E. Asia.  

In comparison to other major land areas in the world (Europe, the Americas, Africa, and 

more), S.E. Asia (as defined by the land areas covered by ASEAN member countries) has not 

been rigorously studied using an ensemble of dynamically downscaled global models over the 

S.E. Asian region. Most of the climate change projections for S.E. Asia have been derived from 

global model runs, including those which informed the Intergovernmental Panel of Climate 

As S.E. Asia contains very 

complex terrain, the region 

is a logical choice for 

regional climate model 

(RCM) simulations. A review 

of the climate change 

related scientific literature 

reveals a lack of regional 

model downscaling 

experiments over S.E. Asia. 
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Change Fifth Assessment Report, or the IPCC AR5 (IPCC, 2013) or have involved the use of 

regional models over individual S.E. Asian countries. 

2.2. Climate change projections on S.E. Asia from AR5 

At the time of its release at the end of 2013, the IPCC AR5 was the most comprehensive 

assessment of the evidence for climate change that has been produced. AR5’s section (14.8.12) 

on S.E. Asia (Christensen, et al., 2013) notes that temperature has been increasing at a rate of 

0.14°C to 0.20°C per decade since the 1960s (Tangang, et al., 2007) and that there have been an 

increasing number of hot days and warm nights with an overall decline in cooler weather 

(Manton, et al., 2001; Caesar, et al., 2011). Furthermore, an increase in the frequency of heavy 

(top 10% by amount) and light (bottom 5%) rain events and a negative trend in moderate (25 

to 75%) rain events has been observed (Lau & Wu, 2007). Annual total rainfall has increased 

by 22 millimetres per decade, while rainfall from extreme rain days has increased by 10 mm 

per decade (Alexander, et al., 2006; Caesar, et al., 2011), with a component of the increased 

rainfall down to more intense tropical cyclones making landfall. Meanwhile, AR5 notes 

reduced precipitation in Indonesia during July to October due to the pattern of Indian Ocean 

warming. It is important to emphasise that it is currently unclear to what extent the regional 

changes are a consequence of anthropogenic climate change. There are large natural decadal 

fluctuations of rainfall in the region and the relative importance of these compared to 

anthropogenic influences has yet to be established.   

For future climate, AR5 indicates a median increase in temperature over land ranging from 

0.8°C in RCP2.6 (“low” greenhouse gas concentrations) to 3.2°C in RCP8.5 (“high” greenhouse 

gas concentrations) by the end of this century (2081–2100). A moderate increase in 

precipitation is projected for S.E. Asia: 1% in RCP2.6 (“low” greenhouse gas concentrations), 

increasing to 8% in RCP8.5 (“high” greenhouse gas concentrations) by 2100 (see Figure 2.1 

below for results for RCP4.5, “medium” greenhouse gas concentrations). On islands 

neighbouring the southeast tropical Indian Ocean, rainfall is projected to decrease during July 

to November, consistent with a slower ocean warming in the east than in the west tropical 

Indian Ocean. However, owing to the poor ability of climate models to accurately simulate 

some of the important circulation features in the region, such as the Madden Julian 

Oscillation, future projections of regional climate extremes in West Asia, S.E. Asia and 

Australia are of low confidence. 
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Figure 2.1: Percentage changes in temperature and precipitation for S.E. Asia according to model in the 
CMIP5 ensemble using RCP 4.5 (medium level greenhouse gas concentrations). 

 

The El Nino Southern Oscillation (ENSO) has a significant impact on both temperature and 

rainfall in many parts of S.E. Asia. In AR5, confidence in projected changes in ENSO and 

related regional phenomena for the 21st century remains low. However, because of increased 

moisture availability, the remote rainfall response associated with ENSO could increase in 

amplitude.  Studies since AR5 have indeed demonstrated that this is the case for the western 

Pacific region(Power, et al., 2013) but the analysis for the S.E. Asian region has yet to be carried 

out. 

AR5 notes improved skill of climate models in reproducing climatological features of the 

global monsoon. This is noted specifically for the southwest summer Asian monsoon in 

climate models used in AR5 (the “CMIP5” models) in comparison to models used in the 

previous assessment report (Sperber, et al., 2012). These climate models show agreement with 

each other in how the monsoon is predicted to change in the future. In summary, the global 

monsoon system (considering all global monsoon systems together) is likely to strengthen in 

the 21st century with increases in its area and intensity, while the monsoon circulation 

weakens. Monsoon onset dates are likely to become earlier or not to change much and 

monsoon retreat dates are likely to be delayed, resulting in lengthening of the monsoon 

season in many regions. These results are generally confirmed by CMIP5 projections 

(Chaturvedi, et al., 2012; Seth, et al., 2013). Furthermore, AR5 notes that future increases in 

precipitation extremes related to the monsoon is very likely in S.E. Asia and other regions of 

the world. There is less agreement among global models regarding monsoon-related 

interannual precipitation variability, resulting in “medium confidence” that it will increase in 

the future.  
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The above results have relevance to the northern regions of S.E. Asia but less so in the western 

Maritime Continent region.  In fact, the analysis in Ar5 did not consider impacts of climate 

change directly on the monsoon systems in this latter region. The mechanisms by which 

rainfall changes in the tropical region are quite complex and appear to be a combination of the 

‘warm gets wetter’ and ‘wet gets wetter’ mechanisms that have been widely discussed in the 

literature (see Huang, et al., 2013).   

While an increasing frequency of extreme events has been observed in northern areas of S.E. 

Asia, decreasing trends in such events are reported in other regions (Chang, 2011). In 

Peninsular Malaysia during the Southwest Monsoon season, total rainfall and the frequency of 

wet days decreased, but rainfall intensity increased in much of the region (Deni, et al., 2010). 

During the Northeast Monsoon, total rainfall, the frequency of extreme rainfall events, and 

rainfall intensity all increased over the peninsula (Suhaila, et al., 2010). However, as already 

noted, there is little direct evidence that these changes can be attributed to man-made climate 

change and naturally occurring decadal variability has also probably played some role.  An 

important question for the region is to establish on what timescale is the increases in rainfall 

extremes expected from global warming, can be expected to ‘emerge’ beyond the range of 

natural decadal timescale variability. 

High-resolution model simulations are necessary to resolve complex terrain such as in S.E. 

Asia (Nguyen, et al., 2012). In a RCM downscaling simulation using the SRES A1B “medium” 

emission scenario (Chotamonsak, et al., 2011), regional average rainfall was projected to 

increase with an increase in summer monsoon, though there is a lack of consensus on future 

ENSO changes. The spatial pattern of change is similar to that projected in the previous IPCC 

(fourth) assessment report (IPCC, 2007). The ECHAM5 GCM, one of the GCMs used in the 

DURIAN experiments, was downscaled over a sub-region of S.E. Asia (among other regions in 

Asia) using the RegCM4 regional climate model, showing an increase of 3-5 degrees Celsius for 

temperature and indeterminate change in rainfall, with the recommendation that 

ensemble simulations using additional RCMs driven by other GCMs are needed (Gu, et 

al., 2012). 

Figure 2.2 and Figure 2.3 below, taken from the supplementary material of AR5 chapter 14, 

show a common feature for projections of temperature and precipitation in the global climate 

models (the CMIP5 GCM ensemble) that were used to inform AR5. These figures show results 

over S.E. Asia land only for two different seasons (June to August for temperature and April to 

September for precipitation). A colour is assigned to each RCP greenhouse gas concentration, 

and to the right of the plot, the total range is given for each RCP, with the median a horizontal 

line through the middle box. These figures illustrate that there is greater certainty in the 

model results as far as changes to average surface air temperature (in which the results for 

various RCPs are distinguishable from each other, and all increasing in reference to present-

day averages) than for precipitation (in which no strong change can be detected in the RCPs). 

Overall, the confidence in increasing surface air temperature is much higher than confidence 

in changes to precipitation for the region. 

All in all, AR5 reports this for S.E. Asia: warming is very likely to continue with 

substantial sub-regional variations. There is medium confidence in a moderate 
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increase in rainfall over continental S.E. Asia but to the south there is generally a 

drying tendency, although this may not be significant relative to the natural decadal 

variations in this region.  Strong regional variations are expected because of terrain. 

Extreme heavy rainfall events are projected to increase across the whole region. 

 

 

Figure 2.2: Temperature change for S.E. Asia (land areas only) during June-August only in CMIP5 global 
models for the four RCP greenhouse gas concentration levels. The changes in temperature are clearly 
identifiable in the various RCPs. 
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Figure 2.3: Precipitation change for S.E. Asia (land areas only) during April-September only in CMIP5 
global models for the four RCP greenhouse gas concentration levels. The results for precipitation are not 
clearly distinguishable among the RCPs. 



 

3. Assessment of End-users’ Needs 

A survey was conducted prior to the Phase 1 workshop in Cambodia to gather information on 

the needs of potential users of regional climate projections. This helped in scoping the project 

and in directing the type of analyses that were needed to be done. In the survey, example of 

questions that were asked touched on the type of climate variables the respondents required 

and the corresponding time frequency, the data format that they would be comfortable with, 

their focus areas in climate change, as well as how the climate projections data would be used. 

3.1. Quantitative responses 

All together there were 41 respondents from 25 national agencies and research institutes 

around the region. Of these, a large proportion of the respondents come from the hydrology 

(54%), the ocean/marine (41%), and the agricultural sectors (39%) (Figure 3.1).  

 

Figure 3.1: Respondents' area of research or work. Note that percentages do not add up to 100% as some 
respondents were involved in multi-faceted work areas. 

Among the climate variables that could be generated by regional climate models, surface air 

temperature, large scale precipitation, surface winds, and convective precipitation came up as 

being the more commonly required variables (Figure 3.2). Respondents also indicated interest 

in all time-resolution for the data, which include annual, seasonal, monthly and daily mean 

values. Such requirements for the climate variables tie in well with the area of research or 

focus that most respondents were involved in (Figure 3.1). On the logistical aspects of the 

climate data, most respondents preferred the NetCDF data format, followed by the text or CSV 

format (Figure 3.3). The HTTP and FTP modes were preferred for downloading of data for use 

in further work and analyses (Figure 3.4).  
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Figure 3.2: Climate variables required by respondents including the time resolution required for the 
variables. 

 

Figure 3.3: Data format for regional climate model output that user would prefer. 
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Figure 3.4: Modes of delivery and availability of regional climate model output data. 

3.2. Qualitative responses 

A number of questions were designed as open-ended to seek free-flowing comments and 

suggestions from the respondents on regional climate work and data. In terms of the work and 

research objectives that the respondents undertake and how they could have previously used 

regional climate projections data, a significant number responded saying much of the work 

they were doing was to support downstream studies in climate impacts and adaptation, which 

would require downscaled outputs from regional climate models. The areas where the work 

they were doing would be applied to include, water resources and drainage management 

(droughts and floods), and the management of risk from extreme events such as heavy rainfall 

and extreme temperatures. A number of notable qualitative responses were also compiled to 

highlight the issues faced and areas of focus by the respondents and the region they represent. 

These relevant sections of the replies are quoted as follows: 

• “... assess the impact of climate change on its water resources in order to manage it in 

sustainable way...” 

• “... alarming change in the past decade with respect to climate and its effects on 

agriculture, fisheries, drought. But proper training in using/running these models 

are missing. Appreciate if you can conduct a training in S.E. Asia ...” 

• “... sea level rise, coastal erosion, (flash) flooding, landslides, groundwater 

salinisation, increasing temperature and warm nights/days ...” 

• “ ... impact on rainforest, haze...”  

• “ ... The land-use change, increasing temperatures and erratic pattern of weather ...” 
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• “... agricultural, fisheries influence of climate change, food security, renewable 

energy ...” 

•  “... we need adaptation strategy ...” 

• “... users need to truly know the meaning of climate projections so as to avoid 

making wrong decisions ...” 

• “... variables must demonstrate sufficient validity (bias correction, ability to reasonably 

replicate seasonality, etc.). Merely uploading variables without sufficient user 

education is dangerous...” 

• “... The need for greater access to various types of climate information products is 

immense; however, capacity to interpret and correctly use the information is low. 

I greatly worry that information portals without sufficient user education and outreach 

will actually cause greater harm and ultimately lead to maladaptation...” 

• “... change in rainfall patterns and inter-annual variability...” 

• “ ... change in tropical cyclone numbers, ENSO, NE Monsoon...” 

• “ ... cold spells, hot spells ...” 

In summary, the responses from the survey provided useful insights into the requirements of 

potential users of regional climate projections data. They have highlighted a number of 

vulnerability areas related to climate change, which include water resources, agriculture, 

fisheries, coastal erosion, and extreme weather impacts on the population. They have also 

highlighted on the training needs to process, analyse, and most crucially to interpret climate 

data. These responses had help to formulate the design of the SEACAM experiments 

(discussed in the next section) and the subsequent provision of climate data to the regional 

community. 
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4. Model Configuration, Datasets and Experimental Design 

This section of the report briefly describes the configuration of HadRM3P (the regional 

climate model used in PRECIS), the experimental design of the SEACAM project and the data 

used for evaluation.  It is split into the following subsections: 

 Regional climate models and the formulation of HadRM3P 

 Domain 

 Driving data and emissions scenario  

 Time periods for analysis  

 Observational data used for the evaluation 

4.1. Regional climate models and the formulation of HadRM3P 

Climate models divide the atmosphere and/or ocean 

into three dimensional grids of discrete computational 

units, which are called grid boxes.  On this grid, 

discrete versions of the equations of motion and energy 

transfer are formulated and integrated forward in time.  

In addition to the discretised equations, climate models 

must also be able to represent atmospheric processes 

that occur at spatial scales smaller than the area of the 

model grid box (e.g. clouds).  The average effect of 

these small scale processes over the whole grid box is 

estimated.  This is referred to as parameterisation. 

Global climate models (GCMs) cover the whole globe 

and typically contain atmosphere, ocean and land 

components.  In contrast, regional climate models 

(RCMs) cover only a limited area of the Earth’s surface.  

RCMs are typically run at higher resolution than GCMs 

in order to add detail to the ’big picture’ description 

given by GCMs, a process also known as downscaling.  

As RCMs cover a limited area, they require input data 

to be provided at the edges of their regional domain.  

This meteorological input data can either come from a 

GCM or from observations.  RCMs typically do not 

include ocean models and consequently sea surface temperatures need to be provided (again 

these can either come from a GCM or from observations).  

In SEACAM, we use a modified version of the HadRM3P regional climate model which is 

based on the atmospheric and land surface components of the HadCM3 climate model 

(Gordon, et al., 2000), and described in more detail in Annex 1 of the PRECIS scientific 

handbook (Jones, et al., 2004).  

Global climate models 

(GCMs) cover the whole 

globe and typically contain 

atmosphere, ocean and land 

components.  In contrast, 

regional climate models 

(RCMs) cover only a limited 

area of the Earth’s surface.  

RCMs are typically run at 

higher resolution than GCMs 

in order to add detail to the 

’big picture’ description 

given by GCMs, a process 

also known as downscaling 
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In HadRM3P, surface boundary conditions are required over ocean grid boxes, where the 

model needs a sequence of successive values of sea surface temperatures.  Lateral boundary 

conditions (LBCs) provide dynamical atmospheric information at the latitudinal and 

longitudinal edges of the regional model domain.  LBCs contain surface pressure, horizontal 

wind components and measures of atmospheric temperature and humidity.  Lateral boundary 

conditions (including sulphur dioxide, sulphate aerosols and associated chemical species) for 

the representation of the atmospheric sulphur cycle)1 are provided when downscaling a 

HadCM3Q model (see below).   

HadRM3P can be run at two resolutions: 0.44° (~50 km) and 0.22° (~25 km).  We use 0.22° in 

this project to allow for the better representation of small islands and coastlines, which are 

very important in Southeast Asia. The model used in this project differs from HadRM3P only 

in the version of the land surface scheme used.  This is the sub-model that climate models use 

to simulate interactions between the land and the atmosphere.  Our modified version of 

HadRM3P uses the MOSES 2.2 land surface scheme (Essery, et al., 2003).   

4.2. Domain  

Regional climate models are designed to add local details to the ‘big picture’ description given 

by the driving GCM (i.e. the GCM which is providing input to the RCM at the boundaries). 

Maintaining this consistency with the driving GCM ensures that a similar range of future 

climate projections in the driving global models are present in the RCM results. The improved 

representation of smaller spatial scales is the reason for performing downscaling experiments.  

Careful consideration of both the size and location of the domain is required to ensure that 

these criteria are met.  

The SEACAM domain was originally designed to include all of the ASEAN countries; however 

the size of the original region caused technical problems with the model runs and would have 

required too long to simulate.  Consequently it became necessary to reduce the eastern extent 

of the domain to 135°E, causing the West Papua region of Indonesia to be excluded. 

The proposed domain was sent to participants of the SEACAM project such that they could 

ensure that any grid boxes containing islands or cities near the coast in their countries were 

represented as land points and not as ocean. The final domain is shown in Figure 4.1 and was 

agreed upon by all participating institutes.   

                                                      
1
 The atmospheric sulphur cycle describes the transportation of sulphur in the atmosphere along with 
the transformations (caused by chemical reactions) between the different compounds that contain 
sulphur (see 
http://www.atmosphere.mpg.de/enid/Nr_6_Feb__2__6_acid_rain/C__The_sulphur_cycle_5i9.html) 
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Figure 4.1: Domain used in experiments. Blue indicates that the grid box is an ocean grid box. Green 
indicates that the grid box is land. Political boundaries are marked with red lines. The darker rim 
between the edge of the picture and the orange line is where the lateral boundary conditions (LBCs) are 
applied - output in this region is not analysed. 

4.3.  Driving data and emissions scenario 

Exploring the range or spread of future climate projections from different GCMs enables us to 

gain a better understanding of the uncertainties in climate change scenarios that result from 

differences in each GCM’s specific model formulation.  The selection of global climate models 

to downscale for SEACAM has been strategically chosen to sample this range. 

Climate change projections made using different future greenhouse gas emission scenarios 

and one climate model often follow the same spatial patterns of change and only vary in terms 

of magnitude.  This is not the case for climate change projections produced using different 

climate models. Consequently in SEACAM, we have decided to focus resources on 

downscaling a range of different global climate models and use just one emissions scenario. 

The remainder of this sub section describes: 

 The emission scenario  

 Two different types of climate model ensembles that sample different sources of 

modelling uncertainty  

 The selection of global models chosen for SEACAM 
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4.3.1. Choice of emissions scenario 
The special report on emissions scenarios (SRES) was written in 2000 by the (IPCC, 2001).  

This report presented a set of six emissions scenarios (‘the SRES scenarios’) that were used in 

the third and fourth IPCC assessment reports. Emissions scenarios are plausible 

representations of future levels of substances that influence the total energy/heat in the 

atmosphere (e.g. green house gases) or which can affect the heat-contributing atmospheric 

substances (e.g. sulphur dioxide, which forms sulphate aerosols).  The scenarios are based on a 

coherent and internally consistent set of driving forces such as demographic and socio-

economic developments.  

In SEACAM, the A1B scenario is used for all projections.  This scenario is based on the 

following assumptions: 

 Rapid economic growth. 

 A global population that reaches 9 billion in 2050 and then gradually declines. 

 The quick spread of new and efficient technologies. 

 A convergent world - income and way of life converge between regions. Extensive 

social and cultural interactions worldwide. 

 A balanced emphasis on all energy sources (i.e. between fossil and non-fossil). 

4.3.2.  The ‘QUMP’ 17 Member Perturbed Physics Ensemble (PPE) 

As described in Section 4.1, climate models must be able to represent atmospheric processes 

that occur at spatial scales smaller than the area of the model grid box (e.g. clouds) through a 

method called parameterisation. Often parameterisations are based on statistical relationships 

with large scale variables and hence have various parameters associated with them. The true 

values of these parameters are often unknown. 

An approach pioneered by the Met Office Hadley Centre (Murphy, et al., 2004) and 

climateprediction.net (Stainforth, et al., 2005) has been the use of climate model ensembles 

(sets of model simulations) that systematically explore the implication of known uncertainties 

in model parameters.  Parameters are identified that are known to be uncertain and important 

for the model response to changing greenhouse gas concentration levels. A large number of 

model simulations are run that sample model parameter values across credible ranges that are 

determined by experts. This is called a Perturbed Physics Ensemble (PPE). 

Boundary conditions that can be used to drive HadRM3P were output from a 17-member PPE 

that used the HadCM3Q climate model (Murphy, et al., 2007; Collins, et al., 2011). HadCM3Q 

is based on HadCM3 but differs in that it: 

 Uses “flux adjustments” to correct systematic errors in sea surface temperature and 

ocean salinity.  This helped produce a more realistic representation of the present day 

climate than in standard HadCM3.  

 Includes the same representation of the atmospheric sulphur cycle that is used in 

HadRM3P. 

The particular parameter combinations that make up the 17-member HadCM3Q ensemble 

were selected from a much larger ensemble of model configurations. These 17 models are often 
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referred to as the ‘QUMP’ ensemble, the name of the project under which they were developed 

(Quantifying Uncertainty in Model Predictions).  The individual ensemble members are 

referred to as Q0–Q16, where Q0 has the same parameter values used in the standard HadCM3 

coupled model.  

4.3.3. Other types of global data and their availability for downscaling 

In contrast to the perturbed physics ensemble approach, a multi-model ensemble contains 

many different climate models (rather than simply varying the parameters used in one model) 

and hence account for a wider range of structural choices in model formulation. Two examples 

of such ensembles include the Coupled Model Intercomparison Project, phase 3 (CMIP3) 

(Meehl, 2007) and phase 5 (CMIP5) (Taylor, et al., 2012).  

Note that the GCM data required as input for driving regional climate models was not 

provided by all GCMs in the CMIP3 ensemble, limiting the choice of input data to what GCMs 

had provided this data. At the beginning of the SEACAM project, models from the CMIP5 

ensemble, the most up to date ensemble of GCMs, were not yet available. Therefore 

data availability needed to be considered when selecting non Hadley Centre GCMs for the 

SEACAM experiments. 

4.3.4. Driving GCMs for the SEACAM experiments 

The QUMP members used for SEACAM are taken from the recommendations of McSweeney, 

et al. (2012). In this study the authors first assess whether individual ensemble members 

should be eliminated due to particularly poor performance in simulating the major features of 

S.E. Asian climate (specifically, the Asian summer monsoon). They then select members that 

capture a broad range of responses in temperature, monsoon characteristics and precipitation.  

Their recommendations are the following members: Q0, Q3, Q10, Q11 and Q13. 

The Max Planck Institute ECHAM5 (Roeckner, et al., 2003) was also selected as a non 

Hadley Centre global model in order to provide some element of a Multi-Model 

Ensemble (MME). The choice of ECHAM5 rather than another non Hadley Centre model was 

made largely by data availability, however  McSweeney, et al. (2012) applied the same 

evaluation criteria used in determining the selection of appropriate QUMP models to all of the 

CMIP3 models (including ECHAM5), and they found no reason to eliminate ECHAM5 due to 

poor performance.  

In addition to climate models, we also downscale the ERA-40 reanalysis (Uppala, et al., 2006).  

Numerical weather prediction (i.e. forecasting) systems use observations to analyse the 

current state of the weather.  Reanalysis data is produced by applying the same systems to past 

weather observations in order to build up a record of the past weather (i.e. of the three 

dimensional state of the atmosphere). Driving regional models with reanalysis data 

allows us to assess the performance of the regional climate model on its own, without 

(or with minimal) errors coming from the driving data. 
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4.4. Time periods for analyses 

The global models in the SEACAM experiments were downscaled by HadRM3P from 1950-

2100, however in this report we study three thirty-year sections. Thirty year sections have been 

chosen to adequately represent how the climate can vary naturally on scales of decades (for 

example, different phases of the ENSO) 

To evaluate the ability of the models to reproduce the present day climate, we study the 

period 1971-2000. This period overlaps with the dates of the ERA-40 reanalysis (1957-2001). 

Two time periods have been chosen to analyse future climate projections. The period 2071-

2100 has been chosen in order to give a strong detectable signal for any possible 

climate changes, whilst 2031-2060 has been chosen as it is more policy relevant for near 

future adaptation activities.  

4.5. Observational data used for the evaluation  

To evaluate surface air temperature and precipitation, we use two different gridded datasets. 

Gridded datasets represent an area average value over a grid box making them directly 

comparable to climate model output (which also contains averages of values over the whole 

grid box). The reliability of such datasets is known to be dependent on the number of 

observational stations (at fixed points) that are used in forming the gridded data, which is 

dependent on both the date and location.   It is also known that there is more confidence in 

monthly averages of the gridded datasets in comparison to daily average data (see for example 

Haylock, et al., 2008). When evaluating the E-OBS dataset1, a dataset of daily gridded 

temperature and precipitation, Haylock, et al. (2008) also find a systematic underestimation of 

extreme values. Differences in the interpolation methods used in the construction of gridded 

observational datasets also cause differences in their estimated values. By using two datasets 

we explore some of these uncertainties associated with observations (although it 

should be remembered that the underestimation of extremes is typical in most 

gridded observational datasets). 

The datasets we use are APHRODITE (Yatagai, et al., 2012; Yasutomi, et al., 2011) and CRU-TS3 

(Harris, et al., 2013). The CRU-TS3 data contains a time series of monthly mean data at a 

spatial resolution of a 0.5° square grid. APHRODITE contains daily mean precipitation and 

temperature on a 0.25° and 0.5° square grids. We use the 0.25° version as this is a similar 

resolution to our RCM output.  The inclusion of daily mean data allows for the evaluation of 

extreme weather events, whilst noting the caveats in the above paragraph. Figure 4.2 shows 

the number of underlying stations used in the construction of the two datasets (for 

precipitation). In general, APHRODITE has a denser network of stations than CRU, although 

this is not the case everywhere. In addition, there are some areas (e.g. Borneo) where the 

station coverage is poor in both datasets. 

                                                      
1
 www.ecad.eu/E-OBS/  
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Figure 4.2: Left. The percentage of 0.05° sub grid boxes of each 0.5° grid box that contain actual 
precipitation observations used  in APHRODITE for the year 2000. Right. The number of actual 
precipitation observations per grid box used in the CRU-TS3 dataset for the year 2000. 

In addition to the gridded datasets, a limited set of station data from Brunei and Singapore 

was used to evaluated the precipitation annual cycle, as the 2 gridded datasets used, CRU and 

APHRODITE showed some discrepancy. ERA-40 reanalysis data has been used to evaluate the 

850 hPa and 200 hPa winds (the winds in the upper atmosphere). These levels have been 

chosen as they are important for evaluating monsoon circulation. 
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5. Assessment of Historical RCM Simulations 

5.1. Why assess/evaluate RCM outputs? 

An integral part of carrying out regional climate simulations of future climate change is to also 

generate historical simulations that can be compared with observations. With the availability 

of historical simulations, it enables assessing (or evaluating) the extent to which regional 

climate model (RCM) is able to realistically simulate the atmospheric processes and 

conditions in the statistical or climatological sense. Evaluating the RCM provides information 

on the extent to which the higher-resolution RCM is able to provide added-value over the 

coarse-resolution global climate model (GCM). Such information is important to users of 

future climate change projections, because it reveals aspects of the simulations which need to 

be treated with caution; for example, if there are systematic biases (or errors) arising from the 

model’s limitations in simulating certain aspects of the long-term climate. On the other hand, 

evaluation of RCM outputs can also determine particular aspects of the long-term climate that 

are simulated well, and hence provide a degree of confidence in the use of the corresponding 

future climate change scenarios.  

5.2. Method of evaluation 

Six simulations were carried out for a period of 150 years from 1949-2099 by the MOHC 

PRECIS RCM at a horizontal resolution of 25 km. The RCM was driven by 6 different boundary 

conditions obtained from the GCM ensemble runs of HadCM3Q0, HadCM3Q3, HadCM3Q10, 

HadCM3Q11, HadCM3Q13 (Murphy, et al., 2007) and ECHAM5 (Roeckner, et al., 2003) and 

including ERA-40 reanalysis driven runs (Uppala, et al., 2006) (see sections 4.3.2 and 4.3.3 for 

details). Historical simulations from these, which run from 1949-2000, were evaluated against 

various datasets appropriate for the respective applications and also for subsets of the period 

that match available data. The evaluations were done in four broad categories (also termed 

“work packages”) as follow: 

1. Annual cycle of temperature and precipitation 

2. Mean temperature and precipitation 

3. Circulation patterns during the Northeast and Southwest Monsoons, and 

4. Extreme precipitation and temperature. 
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It is important to note that while comparisons 

of model outputs against observations provide 

some degree of information of model’s ability to 

simulate the current climate, the datasets used 

in the assessment may have their own 

limitations (e.g. limited coverage in time and 

space, coarser grid-resolution than the model). 

Thus, where models are not able to simulate 

certain processes, and perhaps over certain 

regions (such as places of high elevation), these 

may not entirely be due to the model’s own 

shortcomings, but could be contributed in part 

by errors in the observational dataset itself. 

5.3. Evaluation of temperature 

and precipitation annual cycle 

The annual cycles of temperature and 

precipitation (rainfall) represent the seasonal 

changes of temperature and precipitation 

averaged over an area. In general, model 

simulations of the annual cycle would be 

considered good if they are able capture the 

magnitude of maximum and minimum 

locations of the temperature and precipitation 

at the right times of the year. 

5.3.1. Annual temperature cycle 

Figure 5.1 and Figure 5.2 show the annual cycle plots of temperature averaged over the 

baseline period for individual S.E. Asia countries derived from the 6 RCM simulations, ERA-40 

simulations, APHRODITE temperature dataset (Yatagai, et al., 2012) and CRU temperature 

dataset (Harris, et al., 2013). In all of the plots in Figure 5.1 and Figure 5.2, the spatial average 

of the monthly values for individual countries had been derived by averaging over their 

respective masks. Although spatial averaging by country can be considered less than ideal for 

countries that span a wide range of longitudes and latitudes and therefore multiple 

climatologies (e.g. Indonesia), such information is nevertheless useful for end-users of climate 

projections as they need to know the overall performance of the RCM simulations over the 

areas within their national boundaries. 

The hottest months for most of the countries in the region typically occur between March to 

June and the variations across different countries depend on the relative position in the 

latitudes. The cooler months, usually follow either the arrival of the Southwest Monsoon 

season where the large-scale precipitation cools down land surfaces (for regions in the higher 

latitudes – i.e. mainland S.E. Asia, and the Philippines), or the arrival of the cooler winter air 

from the north during the Northeast Monsoon season (for the entire region in general) and 

Terminology for model outputs 

For better readability, we will be 

referring to the RCM-driven output 

of the HadCM3Q ensemble simply 

as ‘HadCM3Q simulations’, the 

RCM-driven output of ECHAM5 

simply as ‘ECHAM5 simulations’, 

and the RCM-driven outputs of the 

ERA-40 reanalysis dataset simply as 

‘ERA-40 simulations’. All the 6 

HadCM3Q and ECHAM5 

simulations will be collectively 

referred to as the ‘RCM simulations’. 

In drawing the distinction between 

the ‘ERA-40 simulations’ and the 

actual ERA-40 reanalysis dataset 

(not the output of from the RCM 

that is driven by ERA-40 itself), we 

will refer to the latter simply as 

‘ERA-40 reanalysis’. The projections 

from respective models will be 

called ‘projections’ itself. 
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the associated monsoon rain (for regions in the lower latitudes). Details of the temperature 

cycle that are unique to each country or sub-region are therefore influenced by the interaction 

between factors on various spatial and temporal scales, such as the seasons, the atmospheric 

circulation patterns, the monsoon systems, and the terrain (Chang, et al., 2005). 

In general, all the downscaled climate model  simulations are able to simulate the 

temperature cycle well by capturing the observed peaks and dips across the year. This 

is especially true for countries in the mainland S.E. Asia region which includes Cambodia, 

Laos, Myanmar, Thailand, and Vietnam, as well as the Philippines (Figure 5.2). A general 

feature of the RCM simulations over these regions, with the exception of the Philippines, is the 

over-prediction (warm bias) of the warm months and the under-prediction (cool bias) of the 

cooler months. These biases are consistent with respect to both APHRODITE and CRU as the 

observational datasets are in good agreement. On average, the warmer biases are stronger 

than the cool biases. As these characteristics are also observed in the ERA-40 simulations, it 

can be said that the annual temperature cycle for these countries has been artificially 

enhanced to some degree by the RCM. Slightly early onsets (by about a month) for some of 

the simulations are also observed in these parts of S.E. Asia.  

As for countries closer to the equator such as Brunei, Indonesia, Malaysia, Singapore and 

Timor Leste (Figure 5.2), the 6 RCM simulations show larger variability in comparison. These 

simulations under-predict for Brunei (with respect to APHRODITE; but not in relation to 

CRU) and over-predict for Singapore throughout the year (with respect to both APHRODITE 

and CRU). As for Malaysia and Indonesia, the biases are GCM-dependent; with the 

HadCM3Q0, HadCM3Q3, ECHAM5 simulations having cool biases, while the rest 

(HadCM3Q10, HadCM3Q11 and HadCM3Q13) have warm biases. In this instance the preceding 

analyses hold true for APHRODITE for both countries, but for Indonesia using CRU, all 

simulations have cool biases. For the Philippines, simulations generally have cool biases in the 

temperature cycle. Overall, simulations generate biases that range from 1.0 to 2.0°C. 
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(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 5.1: Annual cycle of observed (APHRODITE in dark blue; CRU in black), ERA-40 simulations (in 
maroon) and simulated surface temperature (HadCM3Q0: green, Q3: light blue, Q10: orange, Q11: yellow, 
and Q13: purple) for countries in the northern half of the region, i.e., (a) Cambodia, (b) Laos, (c) Myanmar, 
(d) Philippines, (e) Thailand, and (f) Vietnam for the baseline period (1971-2000)  in degrees Celsius (°C). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.2: Annual cycle of observed (APHRODITE in dark blue; CRU in black), ERA-40 simulations (in 
maroon) and simulated surface temperature (HadCM3Q0: green, Q3: light blue, Q10: orange, Q11: yellow, 
and Q13: purple) for countries in the southern half of the region, i.e. (a) Brunei, (b) Indonesia, (c) 
Malaysia, (d) Singapore, and (e) Timor Leste for the baseline period (1971-2000)  in degrees Celsius (°C). 

5.3.2. Annual precipitation cycle 

In Figure 5.4 and Figure 5.5, the annual rainfall cycles of the simulations are evaluated in a 

similar manner to the temperature cycle against APHRODITE and CRU for precipitation. For 

precipitation cycle, S.E. Asia can generally be divided into 3 sub-regions; in the north where 

the Southwest Monsoon is dominant during the middle part of the year (i.e. Cambodia, Laos, 

Myanmar, Philippines, Thailand, and Vietnam - Figure 5.4); in the middle, near the equator 

(i.e. Brunei, Malaysia and Singapore - Figure 5.5 (a), (c) and (d)) where rainfall is fairly 

uniform throughout the year, and is usually dominated by local, convective thunderstorms 

and consequently a relatively more subdued seasonality in precipitation; and in the south (i.e. 

Indonesia and Timor Leste - Figure 5.5 (b) and (e)) where the wet and dry seasons are mirror 

images of the counterparts in the north. 

When the relative performance of the RCM simulations in these 3 regions was compared, the 

simulations’ ability in capturing seasonal (monsoonal) rainfall of large-scale nature in the 

higher latitudes of the region stands out, compared to the ability in capturing local, 
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thunderstorm development in the lower latitudes. The results for regions in the north and 

south are thus encouraging with the RCM simulations able to pick out the seasonal 

rainfall maxima during the June-September season (JJAS) for Cambodia, Laos, 

Myanmar, Philippines, Thailand and Vietnam and during the November-April season 

(NDJFMA) for Indonesia and Timor Leste. In contrast, the precipitation cycles, or lack 

thereof, for Brunei, Malaysia and Singapore are poorly captured in the RCM. This could 

be due to the complexity of the processes that contribute to the rainfall in these regions, or 

their interactions with the terrain that have either not been captured well by the dynamics of 

the RCM or the resolution at which the RCM was run.  

Although the model is able to simulate seasonal rainfall in the northern parts well in general 

(Figure 5.4), there are issues with regards to double-peaks, early onsets, and largely wet biases 

(especially in relation to APHRODITE with biases of up to 4.0-5.0 mm/day) in the simulations. 

In the southern locations, the simulations for Indonesia and Timor Leste seem to suggest early 

onsets of the dry season by about 2 months and late onset of the wet season by about 1-2 

months. For the equatorial regions, no particular simulation stands out in being able to 

simulate the precipitation cycle reasonably. Despite this, wet biases in this region are relatively 

smaller in the range of 3.0-4.0 mm/day (Figure 5.5). It is worth bearing in mind that the biases 

may not necessarily indicate an over-estimation of mean rainfall, but could be contributed in 

part by under-estimations of precipitation by the gridded-observation dataset. As can be seen 

when comparing between APHRODITE and CRU, APHRODITE seem to suggest that the 

simulations have serious wet biases, but these are not evident in the CRU dataset. Thus, 

simulations compare better against CRU, with the exception of the artificially looking peaks in 

January rainfall (see Figure 5.5a – d), which can be considered artefacts in CRU upon 

comparison with local station datasets for Brunei and Singapore (Figure 5.3). 

 
(a) 

 
(b) 

Figure 5.3: Comparisons of datasets between CRU (black), APHRODITE (blue), and station dataset (red) 
for (a) Brunei and (b) Singapore. This limited comparison suggests that the kink in CRU dataset for 
January is an artefact. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 5.4: Annual cycle of observed (APHRODITE in dark blue; CRU in black), ERA-40 simulations (in 
maroon) and simulated precipitation (HadCM3Q0: green, Q3: light blue, Q10: orange, Q11: yellow, and Q13: 
purple) for countries in the northern half of the region, i.e., (a) Cambodia, (b) Laos, (c) Myanmar, (d) 
Philippines, (e) Thailand, and (f) Vietnam for the baseline period (1971-2000)  in mm/day. 



 
39 Assessment of Historical RCM Simulations 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.5: Annual cycle of observed (APHRODITE in dark blue; CRU in black), ERA-40 simulations (in 
maroon) and simulated precipitation (HadCM3Q0: green, Q3: light blue, Q10: orange, Q11: yellow, and Q13: 
purple) for countries in the southern half of the region, i.e. (a) Brunei, (b) Indonesia, (c) Malaysia, (d) 
Singapore, and (e) Timor Leste for the baseline period (1971-2000)  in mm/day. 
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5.4. Evaluation of seasonal spatial distribution of temperature 

Evaluation of seasonal spatial distribution of temperature (and also rainfall) across the domain 

provides additional information over the evaluation for annual cycle, which has been spatially 

averaged. For example, it can provide details of the location of biases unlike the annual cycle. 

Analysing model simulations in tandem with information on terrain can provide clues to the 

reasons behind reasonable or poor performance in the simulations. The downside of this type 

of analysis, however, is that the distribution of temperature or rainfall in time (as shown by 

the annual cycle plots) is not immediately obvious. The analyses from both types of 

assessment should thus complement, and provide a degree of consistency-check between 

them. 

The surface temperature from the downscaling simulations was compared to the CRU gridded 

dataset used as observation. Before comparing, the PRECIS data was bi-linearly interpolated to 

the CRU’s 0.5°×0.5° grids (Harris, et al., 2013). The biases were then calculated as the 

differences between the simulations and observations at each of the grid points (see Figure 5.6 

- Figure 5.9 below). 

5.4.1. Seasonal mean temperature 
Generally, the mean seasonal temperature biases range between ±4°C with considerable 

spatial and seasonal variations. The biases are largely positive (warm biases) during the 

March - May (MAM) season especially over the mainland S.E. Asia region (Figure 5.6), while 

during September - November (SON) season, the biases are generally negative – i.e. cool 

biases (Figure 5.9). This is broadly consistent with findings from the evaluation of the annual 

cycle in temperature in Section 5.3.1. Consistent cold biases throughout the year are noted 

over the western coast of the Sumatra Island and larger parts of Indonesian Archipelago, 

eastern coast of Vietnam and northern Philippines. Over western Sumatra, Peninsular 

Malaysia and western Borneo, the biases are consistently positive (warm). Note that the model 

consistently produced cooler climate over the north-western edge of the simulation domain 

where the relief is considerably steep and complex. Also, the magnitude of the biases is 

generally larger over the northern region of the domain. This may indicate influence of noise 

propagating from the lateral boundaries from the northern side of the simulation domain. 
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Figure 5.6: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) DJF seasonal mean temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 

 

Figure 5.7: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) MAM seasonal mean temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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Figure 5.8: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) JJA seasonal mean temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 

 

Figure 5.9: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) SON seasonal mean temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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Generally, spatial patterns of the biases in the RCM simulations closely resemble those 

in the ERA-40 simulations. This indicates that the biases are largely sourced from the 

regional climate model that may not represent the regional land surface processes properly. In 

addition, the 0.22° (~25 km) grid resolution may still be too coarse to resolve the steep 

topography where the temperature gradient can be large, particularly over western Sumatra 

and eastern regions of mainland S.E. Asia near Vietnam. The ECHAM5 simulations generally 

show similar results to ERA-40 simulations. Among the HadCM3Q simulations, the 

HadCM3Q10 shows larger discrepancy especially during the June – August (JJA) season (Figure 

5.9) and the SON (Figure 5.8) season. During these seasons, comparatively large warm biases 

extend from central to southern mainland S.E. Asia in the HadCM3Q10 simulation. It is 

expected that these large biases were inherited from the HadCM3Q10. During the December – 

February (DJF) season (Figure 5.6), the HadCM3Q3 simulations shows generally cooler climate 

over the mainland S.E. Asia region compared to other QUMP models.   

5.4.2. Seasonal minimum and maximum temperature 
The seasonal averaged maximum (Figure 5.10 - Figure 5.13) and minimum (Figure 5.14 - Figure 

5.17) temperature were also examined and compared to CRU. Performance in reproducing 

correctly these two variables indicates how well the RCM simulations simulated the day time 

and the night time temperature processes. Generally, the spatial biases structure of the 

seasonal maximum temperature is similar to the seasonal mean temperature. The 

simulations of maximum temperature are generally colder near the equatorial region with 

consistently largest bias (~4°C) over the west-coast of Sumatra. Over the mainland S.E. Asia 

region, the simulations are warmer than the observations, except at the centre of the region 

near ~20°N. Consistent with the mean temperature biases, large warm biases are noted over 

the mainland S.E. Asia region especially during MAM (Figure 5.11). Considerable variations of 

biases among the simulation members can be observed over the northern part of the domains. 

All the HadCM3Q simulations produce biases patterns which resemble that of the ERA-40 

simulations, except MAM, suggesting that the biases are largely sourced from the process-

representations of the regional climate model itself.  During MAM (Figure 5.11), while the 

ECHAM5 simulations show consistent biases pattern similar to that of the ERA-40 

simulations, most of the HadCM3Q simulations produced large warm biases over the entire 

region of the mainland S.E. Asia. Out of the five simulations, the HadCM3Q10 simulations 

show largest difference over western mainland S.E. Asia extending down south to the 

Peninsular Malaysia. These differences are particularly large during the JJA (Figure 5.12) and 

SON (Figure 5.13). 
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Figure 5.10: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) DJF seasonal maximum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 

 

Figure 5.11: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) MAM seasonal maximum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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Figure 5.12: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) JJA seasonal maximum temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 

 

Figure 5.13: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) SON seasonal maximum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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The simulated seasonal mean minimum temperature shows generally warm biases with larger 

magnitude (3-4°C) over western-central mainland S.E. Asia (Figure 5.14 - Figure 5.17). The 

biases magnitudes are generally larger during DJF (Figure 5.14) and MAM (Figure 5.15). 

Although generally lower at magnitudes 1-2°C, the warm biases remain seasonally invariant 

over the southern half of the simulation domain. The pattern is opposite to that of the 

seasonal mean maximum temperature where biases are largely negative in these 

areas. This indicates that the simulations produce much warmer nights, hence smaller 

diurnal temperate range compared to the observation. Over the mainland S.E. Asia, a 

small region at the northern part of Vietnam shows consistently cold biases. All the 6 RCM 

simulations show very similar bias patterns to that of the ERA-40 simulations, suggesting that 

the biases may largely be sourced from the regional climate model itself rather than inherited 

from the GCMs. 

 

Figure 5.14: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) DJF seasonal minimum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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Figure 5.15: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) MAM seasonal minimum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 

 

Figure 5.16: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) JJA seasonal minimum temperature in degrees Celsius (°C). Red 
shades show warm biases of simulations, while blue shades show cool biases of simulations. 
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Figure 5.17: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (CRU) SON seasonal minimum temperature in degrees Celsius (°C). 
Red shades show warm biases of simulations, while blue shades show cool biases of simulations. 

5.5. Evaluation of seasonal spatial rainfall distribution 
The seasonal rainfall from the downscaling simulations was compared to APHRODITE 

(Yatagai, et al., 2012). Before the comparison, the PRECIS data was bi-linearly interpolated to 

the APHRODITE’s 0.25°×0.25° grids. The biases were then calculated as the percentage 

difference between the simulations and observation at each of the grid points (Figure 5.18 - 

Figure 5.21). 

Generally, the bias patterns of seasonal rainfall simulation are much noisier than 

temperature. The simulations produce moderate wet biases of about 20-40% through 

the years, except over the western part of the mainland S.E. Asia where the biases are 

largely negative. Large wet biases of more than 80% were simulated over Cambodia and 

central region of Borneo during DJF (Figure 5.18) and MAM (Figure 5.19). Close to the 

northern boundary of the simulations, the model errors remain large, suggesting possible 

influence of the problematic boundary forcing over this region with steep and complex terrain. 

Generally, the RCM simulations show consistent biases patterns to that produced by the ERA-

40 simulations, except HadCM3Q10 that produced much drier climate over central mainland 

S.E. Asia over Thailand during DJF (Figure 5.18) and JJA (Figure 5.20). In addition, the 

ECHAM5 simulations produced larger wet biases over the equatorial Maritime Continent 

(southern Sumatra and Borneo) during JJA (Figure 5.20). 
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Figure 5.18: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (APHRODITE) DJF seasonal rainfall in % of individual grids’ observed 
climatology. Red shades show dry biases of simulations, while blue shades show wet biases of 
simulations. 

 

Figure 5.19: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (APHRODITE) MAM seasonal rainfall in % of individual grids’ 
observed climatology. Red shades show dry biases of simulations, while blue shades show wet biases of 
simulations. 
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Figure 5.20: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (APHRODITE) JJA seasonal rainfall in % of individual grids’ observed 
climatology. Red shades show dry biases of simulations, while blue shades show wet biases of 
simulations. 

 

Figure 5.21: Difference between the spatial distribution of simulated (ERA-40, ECHAM5 and HadCM3Q0, 3, 
10, 11, 13 simulations) and observed (APHRODITE) SON seasonal rainfall in % of individual grids’ observed 
climatology. Red shades show dry biases of simulations, while blue shades show wet biases of 
simulations. 
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5.6. Evaluation of the Southwest Summer Monsoon 

5.6.1.   Monsoon circulations 

For model evaluation in wind fields, patterns of circulation and wind speed were averaged for 

the period 1971−2000 over S.E. Asia. Figure 5.22 shows the horizontal 850 hPa average wind 

speed (in m/s) and direction in July (typical month within the summer monsoon), for ERA-40 

reanalysis and the 6 RCM simulations members. Figure 5.22 shows that the RCM reasonably 

simulate the spatial pattern of the summer monsoon circulation. The flow directions are 

fairly accurate according to their locations and timing. However, there is a clear systematic 

positive bias in wind speed over the region in all model simulations. Comparisons of 

RCM simulations against ERA-40 reanalysis indicate that HadCMQ10 reconstructed the wind 

speed at 850 hPa most closely. 

The zonal (east to west) wind of summer monsoon at 850 hPa is depicted on Figure 5.23. 

Figure 5.22 is a Hovmoller plot, showing latitude vs. time for the 6 RCM and one ERA-40 

simulations. During the southwest summer monsoon, which occurs from May - September, 

the monsoon winds are westerly (red) and extend from ~5-20N.  The comparisons between the 

ERA-40 simulations as the quasi-observation data and models show that the monthly mean of 

zonal wind during the period of 1971-2000 are in reasonable agreement. 

 

Figure 5.22: 850 hPa mean wind speed in m/s and direction during July, averaged over the 1971-2000 period 
for ERA-40 reanalysis and 6 RCM simulations (ECHAM5 and HadCM3Q0, 3, 10, 11, 13). 
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Figure 5.23: Zonal (east to west) wind component averaged over longitudes 90E to 135E in m/s at 850 hPa 
over the 1971-2000 period for ERA-40 simulations and 6 RCM simulations (HadCM3Q0, 3, 10, 11, 13 and 
ECHAM5). Red shades indicate westerly winds, while blue shades indicate easterly winds. 

5.6.2. Precipitation 

The time–latitude Hovmoller plot of precipitation (land only) is shown in Figure 5.24. The 

precipitation distributions over time in the model runs compare well to APHRODITE 

observations, during the southwest summer monsoon, where the maximum 

precipitation is located between 5 and 20N. All the models are slightly wetter than 

observations. During the S.E. Asian summer, the monsoon onsets around early May and 

withdraws around late September, and this condition is observed in the ERA-40 simulations 

and the RCM simulations. 
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Figure 5.24: Land-only precipitation time-latitude cross-section averaged over longitudes 90E to 135E for 
APHRODITE, ERA-40 simulations, and 6 RCM simulations (HadCM3Q0, 3, 10, 11, 13, and ECHAM5). 

5.6.3. Spatial patterns of precipitation extreme 
Availability of daily precipitation data from APHRODITE allows us to evaluate rainfall 

extremes in the model simulations. The spatial resolution of the observation datasets (0.25o) is 

similar to that of the model (25 km or ~ 0.22o). However, we should bear in mind that the 

spatial coverage of stations in APHRODITE may not be equally high in all regions, and the 

effective resolution of the gridded observation data may be less than 0.25 o.  

Figure 5.25 shows the 95th percentile threshold value of annual rainfall in all 7 RCM 

simulations and APHRODITE June-September (JJAS) rainy days, defined as rainfall over 1 mm. 

Figure 5.26 shows the difference in 95th percentile of JJAS daily rainfall amounts as a 

percentage between APHRODITE and the RCM simulations. The figure shows that all RCM 

simulations overestimated the 95th percentile summer monsoon rainfall amount in the 

continental part of China with the largest bias about 10 to 15%. Simulations of 95th percentile 

summer monsoon rainfall in countries over S.E. Asia are reasonably accurate. In Vietnam for 

example, the majority of extreme rainfall in this season is attributed to tropical cyclones. The 

RCM simulations correctly placed the region with the largest rainfall extremes along the 

eastern coast of the central provinces of Vietnam. However, the magnitudes of these extremes 

are weaker than the 95th percentile in APHRODITE. Similar precipitation patterns of extreme 

rainfall are simulated in the coastal areas of Myanmar. Over most areas, underestimations of 

up to 8% are observed in all RCM simulations. 

 

In summary, all RCM simulations capture patterns of rainfall extremes well (within 

±10% bias), although they are generally underestimated in magnitude compared to 
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APHRODITE over the majority of the domain, with the exception of southern China 

where it is overestimated.  

 
Figure 5.25: 95

th
 percentile of JJAS daily rainfall amounts for APHRODITE, ERA-40 simulations, and 6 RCM 

simulations (HadCM3Q0, 3, 10, 11, 13, and ECHAM5). 

 

Figure 5.26: Difference of 95th percentile of JJAS daily rainfall amounts between 7 simulations and 
APHRODITE over Southeast Asia. 
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5.7. Evaluation of the Northeast Winter Monsoon  

5.7.1. Monsoon circulation 

The meridional (south to north) wind of the Northeast Monsoon at 850 hPa is depicted on 

Figure 5.27.  The figure consists of 6 RCM simulations and one ERA-40 simulations. In the case 

of upper level winds, as direct observations are not accessible, ERA-40 reanalysis results are 

used instead to compare with the RCM runs. The comparison between the ERA-40 

reanalysis and models show that the monthly mean of meridional wind during the 

period of 1970-2000 are in general agreement, however the intensities and the 

durations differ. The longitude span between 90-110°E shows that the northerly wind 

component tends to begin in October and taper off in January. The HadCM3Q10 and 

HadCM3Q13 simulations begin earlier in September and taper off about the same time in 

January.    

1971-2000 meridional wind (m/s) 

 

Figure 5.27: Meridional (south to north) wind component in m/s at 850 hPa averaged over the latitudes 13S 
to 30N over the 1971-2000 period for ERA-40 simulations and 6 RCM simulations (HadCM3Q0, 3, 10, 11, 13 
and ECHAM5). Red shades indicate southerly winds, while blue shades indicate northerly winds. 

5.7.2. Spatial patterns of circulation 

The 850 hPa level circulation patterns from November to March are shown in Figure 5.28. The 

general pattern is captured by the 6 RCM simulations. The position and migration of the 

monsoon trough is well represented. The northeasterly winds over the maritime region is also 

captured rather well, however the intensities tend to be stronger in places than in ERA-40.  

Figure 5.29 depicts the 200 hPa flow during the Northeast Monsoon. The upper level flow 

which indicates the returning branch of the Hadley Cell is captured in all the 



 
56 Assessment of Historical RCM Simulations 

simulations. The intensity of the return flow follows the monthly progression of the 

monsoon. The beginning of the monsoon in November shows a weaker Hadley Cell followed 

by a strong Hadley Cell during December, January and February and the weakening at the end 

of the Northeast Monsoon season in March. The main features of the monsoon circulation are 

apparent in all the projections however the intensities of the circulation vary across models. 
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Figure 5.28: Monthly wind circulation at 850 hPa from November to March (left to right columns) for ERA-
40 reanalysis, ECHAM5 simulations and HadCM3Q0, 3, 11, 10 and 13 simulations (top to bottom rows). 

Nov Dec Jan Feb Mar 

ERA40 

reanalysis 

ECHAM5 

simulations 

HadCM3Q0 

simulations 

HadCM3Q3 

simulations 

HadCM3Q10 

simulations 

HadCM3Q11 

simulations 

HadCM3Q13 

simulations 



 
58 Assessment of Historical RCM Simulations 

 

Figure 5.29: Monthly wind circulation at 200 hPa from November to March (left to right columns) for ERA-
40 reanalysis, ECHAM5 simulations and HadCM3Q0, 3, 11, 10 and 13 simulations (top to bottom rows). 
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5.7.3. Precipitation 
The time–latitude Hovmoller plot of precipitation (land only) is shown in Figure 5.24. In 

general the main precipitation pattern for the Northeast Monsoon is well captured in 

the projections. The heavy rainfall during December to March is indicated in all the 

RCM simulations. The intensity however varies. The location of the heavy rainfall belt which 

lies between 5°S to 10°N which is present in the observations and ERA-40 is also present in all 

simulations. The precipitation distribution over time in the model simulations is in agreement 

with observations, except for ECHAM5 simulations which is too wet. The ECHAM5 

simulations tends to extend the heavy rainfall period beyond the Northeast Monsoon (up to 

June) for the 5°S to 10°N heavy precipitation region. 

5.7.4. Spatial patterns of precipitation extreme 
The DJF precipitation in the 95th percentile is shown in Figure 5.30.  All RCM simulations tend 

to project more extreme rainfall occurrences over Southern Vietnam and the Philippines 

(Figure 5.31). ECHAM5 however has projected relatively more extreme rainfall amounts in the 

southern part of the Maritime Continent where the Nusa Tenggara Islands of Indonesia are 

located. 

 

Figure 5.30: 95
th

 percentile of DJF daily rainfall amounts for APHRODITE, ERA-40 simulations, and 6 RCM 
simulations (HadCM3Q0, 3, 10, 11, 13, and ECHAM5). 
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Figure 5.31: Difference of 95
th

 percentile of DJF daily rainfall amounts between 7 simulations and 
APHRODITE over Southeast Asia. 
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5.8. Evaluation of extreme rainfall indices 
A regional climate model, due to its relatively high resolution, is expected to reproduce better 

indices for extreme events than the coarser global climate models, both for its increased 

horizontal resolution and for the improved representation of faster processes (Jones, et al., 

1995). In particular, regional models at resolutions comparable to the one used for this project 

are expected to provide good rainfall extremes for daily aggregation at mid latitudes (e.g. Frei, 

et al., 2006). Similar studies have not been done for Southeast Asia.  It is thus important to 

assess the model’s skill in reproducing them. In this section, three extreme precipitation 

indices from the RCM simulations were analysed and compared to APHRODITE, which has 

similar horizontal resolution with respect to the regional model integrations of this study, and 

to the ERA-40 simulations. The biases produced by the simulations in the indices were 

calculated and the model’s skill in producing them was assessed. The indices analysed are the 

annual maximum one day rainfall (Rx1day), annual maximum consecutive five days rainfall 

(Rx5day) and annual maximum of consecutive dry days26 (CDD, or in other words maximum 

length of dry spell). 

These indices have been estimated for the period 1971-2000. It is worth to underline the 

different nature of the boundary conditions used for this study: while the ERA-40 dataset is a 

reanalysis product based on actual observations for this period and that the simulations based 

on this are expected to reproduce accurately large-scale modes of variability (e.g El Nino), the 

RCM simulations are completely independent realisations of the present climate. Thus the 

latter are only constrained by the same concentrations of greenhouse gases but not expected 

to reproduce the detailed year-to-year variations of the large scale mode. For indices extracted 

from a thirty year sample, the role of the multiannual variability is expected to be negligible. 

However, since we are dealing with extreme events, the size of the sample is reduced and the 

possibility that natural variability could play a role cannot be ruled out. 

5.8.1. Annual maximum one day rainfall (Rx1day) 

The Rx1day indices from APHRODITE, ERA-40 simulations, and the 6 RCM simulations for 

the period 1971-2000 were plotted on Figure 5.32. The RCM simulations showed consistent 

spatial patterns of biases with the ERA-40 simulations and with each other, which 

suggests biases can be reasonably attributed to the RCM formulation. The stronger 

biases (of the order 100 mm/day) can be seen in places like coastal Myanmar, northern 

Philippines, central Borneo, northern Peninsular Malaysia, western coast of Sumatra, and 

Sulawesi – all of which look like terrain-related biases. While the all-positive biases in Figure 

5.33 indicate that the RCM could be severely overestimating the rainfall over these areas, it is 

also worth bearing in mind the possibility that APHRODITE could have underestimated the 

extreme rainfall over the whole region. 

As discussed in Section 4, the number of stations used in APHRODITE might not be sufficient 

to reproduce extreme indices such as the annual maximum rainfall (Rx1day). A sensitivity 

study over Japan (Kamiguchi, et al., 2010) on the effects of station density on extreme rainfall, 

using the AHPRODITE interpolation method, has shown systematic errors in reproducing 

                                                      
26

 For mathematically precise definitions of these indices, refer to the CLIMDEX website at 
http://www.climdex.org/indices.html 
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extreme rainfall, similar to those reported for the European dataset EObs (Haylock, et al., 

2008). At the time, the same studies have shown that less intense precipitation could be 

reproduced quite accurately by coarser station networks. In addition to the problems related 

to the density of stations used in building this observational dataset, there could also be 

specific problems in high-elevation areas. A assessment of a gridded precipitation dataset for 

the European Alps (Frei, et al., 2003) has identified two issues, both leading to an 

underestimate of precipitation: 1) the station network could not be representative of the area 

when stations in the valleys are more represented than stations at higher elevations (network 

bias) and 2) rain gauges are affected by under-catchment, i.e. they collect less rainfall, in 

intense wind conditions. The latter problem has given the largest contribution for the 

European Alps (Frei, et al., 2003), a region which has a very dense network of stations. For 

APHRODITE, which has very sparsely observed large areas, it could be the main factor leading 

to underestimated rainfall. 

At any rate, a comparison between RCM results and APHRODITE could still be useful in 

assessing RCM skills in reproducing the geographical distribution of extreme rainfall. As 

reported in Sections 5.6.3 and 5.7.4, GCM driving conditions do not seem to have a strong 

effect on annual rainfall maxima, and indices from the RCM simulations have also the same 

geographical pattern obtained from the ERA-40 simulations. The biases from the RCM 

simulations (Figure 5.32) show the same pattern for all the integrations; these plots do not 

show any particular link between the magnitude of the bias and the density of the 

observational network (Yatagai, et al., 2012, fig 1). Hence, this simple comparison of spatial 

patterns is also inconclusive, a more detailed study or an alternative observational dataset are 

needed. 

 

Figure 5.32: Spatial distribution of annual maximum 1 day rainfall (Rx1day) for APHRODITE, and the ERA-
40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 
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Figure 5.33: Difference between the spatial distribution of annual maximum 1 day rainfall (Rx1day) for the 
ERA-40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations against APHRODITE. Red shades 
show negative biases (dry), while blue shades show positive biases (wet) of simulations. 

5.8.2.  Annual maximum consecutive five days rainfall (Rx5day) 
The Rx5day indices from APHRODITE, the 6 RCM simulations, and the ERA-40 simulations 

for the present day 1971-2000 were plotted on Figure 5.34. Unlike the Rx1day rainfall index, 

which could represent extreme rainfall from more local, short-term events, the Rx5day rainfall 

is an index which is reflective of precipitation from larger spatial and longer time scale 

phenomena, such as monsoon rainfall and tropical cyclones. For these spatial and temporal 

characteristics, the comparison with the Rx5day estimated from APHRODITE is expected to 

be more relevant, since it is both more probable to capture large scale, long lived events on a 

low density station network and easier to interpolate large scale precipitation events. 

All the RCM simulations reproduce the basic pattern of variation estimated from the 

APHRODITE dataset over the whole area (Figure 5.34). However, the five HadCM3Q 

simulations show consistent bias patterns to that produced by the ERA-40 

simulations, except for ECHAM5 simulations which show a more intense rainfall in the 

lower latitudes. Similar to the Rx1day, the biases in Rx5day continue to show wet biases in 

the elevated regions, but in addition dry biases also emerge in the Rx5day, and these occurs 

generally in places that complement those with wet biases. 

Dry biases indicate that the index estimated from APHRODITE seems not affected by 

problems related to network density for these areas, since these problems would result in an 

overestimated extreme index in the simulations. On the other hand, issues associated to 

observations over high elevation areas(Frei, et al., 2003) could still produce underestimated 

gridded rainfall, which could be the main contribution to the wet biases over these regions. 

The similarities in the spatial patterns of the bias again highlight the possibility of terrain-
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induced rainfall is mainly determined by the regional climate model, but the magnitude of the 

bias seems to suggest a possible role for this index. It is also possible to indentify the role of 

the driving GCM. Figure 5.35 shows ECHAM5 as the wettest global model and HadCMQ10 as 

the driest model, while the other four HadCM3Q members are showing bias patterns quite 

similar in magnitude to the ERA-40 simulations. As it has already been mentioned, the ERA-

40 simulations are expected to have an accurate representation of the multiannual variability 

for the 1971-2000 period. As the Rx5day index is expected to be mainly determined by 

monsoonal rainfall, it could be heavily influenced by multi-annual variability. Representation 

of multi-annual variability in GCMs could thus contribute to the results seen for the two 

outliers, ECHAM5 and HadCM3Q10. 

 
Figure 5.34: Spatial distribution of annual maximum consecutive 5 days rainfall (Rx5day) for APHRODITE, 
and the ERA-40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 
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Figure 5.35: Difference between the spatial distribution of annual maximum consecutive 5 days rainfall 
(Rx5day) for the ERA-40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations against 
APHRODITE. Red shades show negative biases (dry), while blue shades show positive biases (wet) of 
simulations. 

5.8.3. Annual maximum of consecutive dry days (CDD) 
This index depends on the RCM’s ability to produce dry days under the large scale forcing 

from GCMs or reanalyses. GCMs, at their typical horizontal resolution, tend to overestimate 

the fraction of light daily precipitation, even in the tropics (“drizzle problem”, Sun, et al., 

2005), while simulating correct amounts of monthly and seasonal precipitation. This problem 

is related to the description of spatially averaged convective processes on a relatively large area 

such as a GCM grid box (Dai, 2006). As a result, the number of dry days is underestimated. 

Since RCMs are run at higher resolution, they are expected to produce better estimates of wet 

days and, depending on the quality of the boundary conditions, might also be able to 

reproduce dry spell statistics. 

There is generally good agreement in the spatial patterns of maximum CDD (or the 

longest dry spell) in the ERA-40 simulations and 6 RCM simulations, with APHRODITE 

(Figure 5.36). Areas in the north (mainland S.E. Asia and the Philippines) are simulated with 

longer dry spells than observed, while areas in the south (Maritime Continent) are simulated 

with shorter dry spells than observed (Figure 5.37). Apart from this broad geographical 

distribution of the bias, detail patterns and magnitude depend on the boundary conditions 

used to drive the regional model. The bias estimated from the ERA-40 simulations (Figure 

5.37, top left panel) give an idea of errors that could be directly attributed to the regional 

model. Comparing to the ERA-40 simulations, the ECHAM5 simulations produced the most 

similar pattern in the north (e.g. Cambodia, Thailand and Myanmar), while the HadCM3Q 

simulations resemble more of the ERA-40 simulations in the south (e.g. Peninsular Malaysia, 

Sumatra, Borneo, and Sulawesi) especially HadCM3Q0, 11, and 13. In comparison with 
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APHRODITE, some RCM simulations seem to have a reduced bias with respect to the ERA-40 

simulations. It is probable that this reduction is due to the cancellation of errors, whereby the 

GCM provides wetter conditions for the regions while the RCM has a dry bias. 

 
Figure 5.36: Spatial distribution of annual maximum consecutive dry days (CDD) for APHRODITE, and the 
ERA-40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 

 

Figure 5.37: Difference between the spatial distribution of annual maximum consecutive dry days (CDD) 
for the ERA-40 simulations, HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations against APHRODITE. Red 
shades show negative biases (shorter dry spells), while blue shades show positive biases (longer dry 
spells) of simulations. 
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5.8.4. Trends in extreme rainfall indices 
A 30-year 1971-2000 time series for Rx1day, Rx5day and CDD for both APHRODITE and the 

ERA-40 simulations were plotted on Figure 5.38 - Figure 5.40 for the land regions in the whole 

domain. For the Rx1day index (Figure 5.38), APHRODITE showed increasing trends but this is 

not considered significant (at p-value <0.05). The ERA-40 simulations however reproduced a 

trend that is relatively stronger and statistically significant. As for the Rx5day index (Figure 

5.39), both observation and simulation show increasing trends which are statistically 

significant and, like the Rx1day index, the simulation exaggerates this trend. Another notable 

outcome is that the simulation reproduced the inter-annual variability well after 1985 in both 

the Rx1day (Figure 5.38) and Rx5day (Figure 5.39) indices. A possible reason for the stronger 

and very significant trend in the ERA-40 simulations could be due to the different 

observational datasets used in different periods to construct the ERA-40 reanalysis 

(Andersson, et al., 2004), leading to a pronounced increase in tropical humidity after 1991, 

which corresponds to the period of increased extreme indices in Figure 5.38 and Figure 5.39. 

For CDD, both APHRODITE and ERA-40 simulations showed no significant trend (Figure 

5.40). 

Table 1 summarises the p-values (significance) and the regression coefficients (magnitude) of 

the trends in APHRODITE and ERA-40 simulations. Overall, the RCM was able to 

reproduce the sign of the trends (for Rx1day and Rx5day) and the inter-annual 

variability of the observed rainfall indices (for Rx5day and CDD), although it seems to be 

affected by the non-homogeneity of humidity from the ERA-40 boundary conditions. 
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Table 1: Trends in APHRODITE and ERA-40 simulations of rainfall indices. 

 p-value Regression 
Coefficient 

Rx1day 

APHRODITE 0.069 0.117 

ERA-40 0.00004894 0.572 

Rx5day 

APHRODITE 0.019 0.291 

ERA-40 0.000453 1.005 

CDD 

APHRODITE 0.357 0.079 

ERA-40 0.782 -0.024 

 

 

Figure 5.38: Time series plot (30-years from 1971-2000) of Rx1day for APHRODITE (top) and ERA-40 
simulations (bottom) for S.E. Asia. Blue line is the fitted linear trend. 
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Figure 5.39: Time series plot (30-years from 1971-2000) of Rx5day for APHRODITE (top) and ERA-40 
simulations (bottom) for S.E. Asia. Blue line is the fitted linear trend. 

 

Figure 5.40: Time series plot (30-years from 1971-2000) of CDD for APHRODITE (top) and ERA-40 
simulations (bottom) for S.E. Asia. Blue line is the fitted linear trend. 
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5.9. Evaluation of extreme temperature indices 
The mean annual maximum and minimum average daily temperature, TMx and TMn 

respectively, for the 6 RCM simulations and the ERA-40 simulations were evaluated against 

APHRODITE (1971-2000) in the subsequent sections. TMx represents the average of several 

years’ warmest-day-of-the-year, while TMn represents the average of several years’ coolest-

day-of-the-year. 

5.9.1. Mean annual minimum average daily temperature, TMn 

The simulations of TMn from the 6 RCM together with the ERA-40 simulations and 

APHRODITE are shown in Figure 5.41. In general, the TMn is simulated well by the 6 RCM 

simulations and the ERA-40 simulations (Figure 5.42). But in some isolated areas over 

Sumatra, southern Borneo, southern Peninsular Malaysia, and parts of mainland S.E. Asia, 

warm biases are observed in the order of 1 to 2°C. Southern China shows cold biases in the 

order of 1 to 3°C. In these regions, biases have the same order of magnitude as seasonal daily 

temperatures (Figure 5.6 to Figure 5.9). All the RCM simulations also have strong cold biases 

over the Tibetan Plateau, including that from the ERA-40 simulations, suggesting general 

difficulty in simulating temperatures in that region. This cold bias could be related to 

problems in applying atmospheric boundary conditions at the rim, in a region with very 

complex topography. 

 

Figure 5.41: Mean annual minimum average daily temperature, TMn, from APHRODITE, the ERA-40 
simulations, the HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 
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Figure 5.42: Difference between the simulations (ERA-40, HadCM3Q0, 3, 10, 11, 13 and ECHAM5) and 
observations (APHRODITE) mean annual daily minimum average temperature, TMn, in °C. Red shades 
show warm biases of simulations, while blue shades show cool biases of simulations. 

5.9.2. Mean annual maximum average daily temperature, TMx 

The mean annual maximum average daily temperature, TMx, from the 6 RCM simulations and 

the ERA-40 simulations show some biases as well (Figure 5.43). Warm biases relative to 

APHRODITE range from 1 to 4°C over the Maritime Continent of Peninsular Malaysia, 

Sumatra and Borneo. Even warmer biases of about 2 to 5°C were simulated over the regions of 

southern China and northern parts of Vietnam, Thailand, Myanmar, and Laos (Figure 5.44); 

this could be due to local processes and affected by the availability of soil moisture in the 

warmest seasons. Sulawesi, the Philippines, and coastal Myanmar show negative biases in the 

order of 1 to 3°C. As with the TMn, all the RCM simulations also have strong cold biases over 

the Tibetan Plateau, including that from the ERA-40 simulations, which again suggests 

general difficulty in simulating temperatures in that region that could also be related to 

problems at the boundaries. 
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Figure 5.43: Mean annual maximum average daily temperature, TMx, from APHRODITE, the ERA-40 
simulations, the HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 

 

Figure 5.44: Difference between the simulations (ERA-40, HadCM3Q0, 3, 10, 11, 13 and ECHAM5) and 
observations (APHRODITE) mean annual daily maximum average temperature, TMx, in °C. Red shades 
show warm biases of simulations, while blue shades show cool biases of simulations. 
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5.9.3. Maximum day time temperature, TXx and Maximum night time 

temperature, TNx 

The ERA-40 and RCM simulations of the annual maximum day time temperature (or warmest 

day), TXx, and annual maximum night time temperature (or warmest night), TNx, are plotted 

on Figure 5.45 and Figure 5.46. For these extreme temperature indices, no suitable datasets are 

available to be compared against. Thus, the performance of the simulations against only the 

ERA-40 simulations was analysed. It should be taken into account that the analyses of 

minimum and maximum daily temperatures shown in the sections above indicate that the 

ERA-40 simulations are not necessarily the simulations with the smallest bias and that 

instantaneous minimum and maximum temperature are much more difficult to reproduce 

since they are the result of very short-lived processes which could be much more difficult to 

capture by a regional model. Therefore, a proper assessment by comparison with a good 

quality dataset is still needed to evaluate these model simulations. For the TXx, the 6 RCM 

simulations and the ERA-40 simulations are generally comparable with values between 36 and 

40°C over the Maritime Continent of Peninsular Malaysia, Sumatra, Philippines and Borneo 

except over the highland areas. Many places over mainland S.E. Asia (e.g. northern Thailand 

and Myanmar) and southern China show values ranging from 40 to 46°C. 

TNx from the 6 RCM simulations and the ERA-40 simulations were also generally comparable 

with values of 28 to 32°C over the sea and low land areas of Maritime Continent. Tibetan 

plateau showed TNx of less than 18°C. Other land regions showed TNx of 22 to 28°C. 

 

Figure 5.45: Maximum day time temperature (warmest day) of the year, TXx, from the ERA-40 simulations, 
the HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 
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Figure 5.46: Maximum night time temperature (warmest night) of the year, TNx, from the ERA-40 
simulations, the HadCM3Q0, 3, 10, 11, 13 and ECHAM5 simulations. 

5.9.4. Trends in extreme temperature indices of TMx and TMn 

A 30-year 1971-2000 time series for TMx and TMn for both APHRODITE and ERA-40 

simulations of TMx and TMn were plotted on Figure 5.47 and Figure 5.48. Table 2 summarises 

the p-values (significance) and the regression coefficients (magnitude) of the trends in 

APHRODITE and ERA-40 simulations. 

 
Table 2: Trends in APHRODITE and ERA-40 simulations of temperature indices. 

 p-value Regression 

Coefficient 

TMx 

APHRODITE 0.05 0.010 

ERA-40 0.12 0.012 

TMn 

APHRODITE 0.0000408 0.055 

ERA-40 0.0455 0.019 

 

For both extreme temperature indices, there are statistically significant (at p-value < 0.05) 

trends in APHRODITE. The ERA-40 simulations are able to capture a similar trend in the TMx 

but the trend is not statistically significant (Figure 5.47). As for the TMn index, the ERA-40 

simulations are not able to capture as strong as trend as in the observations, but the trend 

detected is statistically significant. Figure 5.47 and Figure 5.48 compare trends for the two 

indices estimated from APHRODITE and the ERA-40 simulations. The two figures show a very 

good comparison of the interannual variability of the two indices which do not suggest any 
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particular problems related to the discontinuity of tropospheric humidity associated with the 

ERA-40 reanalysis (Andersson, et al., 2004). 

 

Figure 5.47: Time series plot (30-years 1971-2000) of annual maximum average daily temperature (TMx) for 
APHRODITE and ERA-40 simulations. Blue line represents the fitted linear trend. 

 

Figure 5.48: Time series plot (30-years 1971-2000) of annual minimum average daily temperature (TMn) for 
APHRODITE and ERA-40 simulations. Blue line represents the fitted linear trend. 

5.10. Evaluation of 5-year return level indices (TMx and Rx1day) 

Figure 5.49 and Figure 5.50 show 5-year return levels for the maximum daily temperature 

(TMx) and precipitation (Rx1day), from the series of annual maxima from APHRODITE, the 
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ERA-40 simulations and for two RCM simulations, HadCM3Q0 and ECHAM5, for the period 

1970-2000. These estimates have been done by fitting the series of annual maxima to a 

Generalised Extreme Value (GEV) distribution, using a maximum likelihood estimate (MLE), 

as described in Coles, 2001. These are events which are five times less likely than the ones in 

sections 5.9.2 and 5.8.1. In comparison with the figures from the said sections, the Rx1day 

(Figure 5.32) have the same pattern and much reduced rainfall intensity with respect to the 5-

year return level plot (Figure 5.49), which can be exceeding 50% in the wettest regions.  The 

comparison with APHRODITE shows a scaling factor between observed and simulated 

precipitation that is not too different from the scaling factor which can be estimated from the 

Rx1day analysis (Figure 5.32). From the work of Kamiguchi, et al. (2010) it is expected that this 

scaling factor should increase quite quickly for very extreme precipitation, but this analysis 

seems to show that this limit has not been reached yet. 

 

Figure 5.49: 5-year return levels for the maximum daily precipitation (Rx1day), from the series of annual 
maxima from APHRODITE, the ERA-40 simulations and for two RCM simulations, HadCM3Q0 and 
ECHAM5, for the period 1970-2000. 

A closer similarity can be found between TMx (Figure 5.43) and the 5-year return values of the 

maximum daily temperature (Figure 5.50) for all datasets in this study. In this case, the 

difference between two indices is quite small, a possible indication that daily temperatures are 

reaching their maximum asymptotic values (the existence of an asymptotic value has been 

assessed from the GEV analysis and corresponds to the case of negative shape parameters, cf. 

Coles, 2001). 
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Figure 5.50: 5-year return levels for the maximum daily temperature (TMx), from the series of annual 
maxima from APHRODITE, the ERA-40 simulations and for two RCM simulations, HadCM3Q0 and 
ECHAM5, for the period 1970-2000. 

5.11. Evaluation of precipitation tele-connection with ENSO 

This analysis examines the ability of the RCM to capture the tele-connections (covariance) 

between precipitation in the region with the El-Nino Southern Oscillation (ENSO), in 

particular the Nino3.4 index. The 5-year return level for JJA rainfall from APHRODITE, the 

ERA-40 simulations and the two RCM simulations, HadCM3Q0 and ECHAM5, are plotted on 

Figure 5.51 to provide context. JJA is chosen as the season is significantly affected by ENSO. 

This figure show the positive differences between simulated and observed indices over the 

northern part of the domain, but on the Maritime Continent, APHRODITE has return levels of 

the same order of magnitudes or even larger than the model data, in particular on the coastal 

areas (with the exception of the high elevation areas which have a strong negative differences 

between model and observation estimates). These estimates of the 5-year return levels have 

nevertheless a smaller negative bias with respect to the 95% percentile estimated for JJAS 

(shown in Figure 5.26). 

The analysis of the covariance between precipitation and ENSO can be done by adding a 

parameter which depends on the NINO3.4 index to the location parameter of the GEV curve 

(Coles, 2001). A comparison of the covariates can be done only between APHRODITE and 

ERA-40 (Figure 5.52), since the GCMs have their ENSO events independent from the observed 

record and the period is probably not sufficiently long to ensure that there will be a sufficient 

number of El Nino-La Nina events to estimate a covariate. The stippled areas show a 

significant statistical relationship at the 5% level. Both datasets show a widespread significant 

relationship for the equatorial region. Equally important are the small patches of strong 

significant relationship over the continental areas, because there is a good overlap between 
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the significant region from APHRODITE and those from the ERA-40 simulations. It is 

important to assess that the RCM model is indeed capable to convert the large scale forcings 

(ENSO in this case) to localised extreme rainfall events. 

 

Figure 5.51: 5-year return levels for the maximum daily precipitation (Rx1day) during JJA, from the series 
of annual maxima from APHRODITE, the ERA-40 simulations and for two RCM simulations, HadCM3Q0 
and ECHAM5, for the period 1970-2000.  

 

 

Figure 5.52: Covariance between precipitation with Nino3.4 index in APHRODITE (left) and ERA-40 
simulations (right). The stippled (black) areas show a significant statistical relationship at the 5% level.



 

6. Mid- and Long-term Climate Change Projections 

The mid- and long-term climate change 

projections for the different climate parameters 

are provided for two 30-year periods, 2031-2060 

and 2071-2100, respectively. All changes are 

provided with respect to the baseline period of 

1970-2000 which has been used in section 5. All 

the climate change projection runs from the 

HadCM3Q ensemble and the ECHAM5 global 

climate models will be referred to as simply 

‘projections’ henceforth. On occasions, mid- 

and long-term projections would 

interchangeably be referred to as mid- and end-

century projections. 

6.1. Annual temperature cycle 

projections  

In the subsequent plots, future changes in the 

annual cycle temperature plots are given for the 

mid-term in dashed lines, and for the long-term 

in dotted lines. For the baseline periods, these 

had been plotted as solid lines. The projections 

are provided from top to bottom in the order of HadCM3Q0, 3, 10, 11, and 13 and the ECHAM5. 

(a) Surface Air Temperature (°C) Cambodia 

 

(b) Surface Air Temperature (°C) Laos 

 

Range of future projections 

Note that the range of the 

uncertainty in the future projections 

of the selected HadCM3Q ensemble 

members represents only the range 

from parametric uncertainty (see 

Section 4.3.2). The inclusion of the 

ECHAM5 simulation serves to give 

only limited additional information 

on structural uncertainty from a 

different GCM. Another type of 

uncertainty comes from using a 

different RCM, which is not covered 

in this report. As such, the 

outcomes of the projections sections 

need to be taken in context with the 

reports from the IPCC (AR5 and 

SREX), as well other regional 

climate downscaling studies. 



 
80 Mid- and Long-term Climate Change Projections 

(c) Surface Air Temperature (°C) Myanmar 

 

(d) Surface Air Temperature (°C) Philippines 

 
(e) Surface Air Temperature (°C) Thailand 

 

(f) Surface Air Temperature (°C) Vietnam 

 
Figure 6.1: Annual cycle of surface air temperature for (a) Cambodia, (b) Laos, (c) Myanmar, (d) 
Philippines, (e) Thailand, and (f) Vietnam for the baseline period (1971-2000) in solid lines, mid-term 
projections (2031-2060) in dashed lines and long-term projections (2071-2100) in dotted lines. Significant 
projections passing xxx level in t-test are plotted in red. 



 
81 Mid- and Long-term Climate Change Projections 

(a) Surface Air Temperature (°C) Brunei 

 

(b) Surface Air Temperature (°C) Indonesia 

 

(c) Surface Air Temperature (°C) Malaysia 

 

(d) Surface Air Temperature (°C) Singapore 
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(e) Surface Air Temperature (°C) Timor Leste 

 

 

Figure 6.2: Figure 6.3: Annual cycle of surface air temperature for (a) Brunei, (b) Indonesia, (c) Malaysia, 
(d) Singapore, and (e) Timor Leste for the baseline period (1971-2000) in solid lines, mid-term projections 
(2031-2060) in dashed lines and long-term projections (2071-2100) in dotted lines. Significant projections 
passing the 5% level in t-test are plotted in red. 

Table 3: Summary of estimated mid-term and long-term projections of annual cycle temperature changes. 

Country Approx. mid-term 
change projections 
(°C) 

Approx. long-term 
change projections  
(°C) 

Significant 
projections 

Cambodia  2.0 – 3.0  4.0 – 5.0 All 
 Laos 2.0 – 3.0 3.0 – 4.0 

Myanmar Up to 2.0 Up to 4.0 

Philippines Up to 1.5 Up to 3.0 

Thailand 2.0 – 3.0 4.0 – 5.0 

Vietnam 2.0 – 3.0  3.0 – 4.0 

    

Brunei 2.0 – 3.0 3.0 – 4.0 All 

Indonesia 2.0 – 3.0 3.0 – 4.0 

Malaysia 2.0 – 3.0 3.0 – 4.0 

Singapore Up to 1.5 Up to 3.0 

Timor Leste 1.5 – 2.0 3.0 – 4.0  

 

Table 3 summarises the change in the annual temperature cycle projections for each country. 

All models and countries show significant and consistent increase in surface air temperature. 

In general, surface air temperature are expected to rise by 2°C by mid-century and 4°C 

by end-century, with some countries projected to be experiencing an increase by up to 

5°C. 
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6.2. Annual precipitation cycle projections 

In the following plots, future changes in the annual precipitation cycle plots are given for the 

mid-term in dashed lines, and for the long-term in dotted lines in mm/day. For the baseline 

periods, these had been plotted as solid lines. The projections are provided from top to bottom 

in the order of HadCM3Q0, 3, 10, 11, and 13 and the ECHAM5. 

(a) Precipitation (mm/day) for Cambodia 

 

(b) Precipitation (mm/day) for Laos 

 
(c) Precipitation (mm/day) for Myanmar 

 

(d) Precipitation (mm/day) for Philippines 
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(e) Precipitation (mm/day) for Thailand 

 

(f) Precipitation (mm/day) for Vietnam 

 
Figure 6.4: Annual cycle of precipitation for (a) Cambodia, (b) Laos, (c) Myanmar, (d) Philippines, (e) 
Thailand, and (f) Vietnam for the baseline period (1971-2000) in solid lines, mid-term projections (2031-
2060) in dashed lines and long-term projections (2071-2100) in dotted lines. Significant projections passing 
the 5% level in t-test are plotted in red. 

 

(a) Precipitation (mm/day) for Brunei 

 

(b) Precipitation (mm/day) for Indonesia 
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(c) Precipitation (mm/day) for Malaysia 

 

(d) Precipitation (mm/day) for Singapore 

 

(f) Precipitation (mm/day) for Timor Leste 

 

 

Figure 6.5: Annual cycle of precipitation for (a) Brunei, (b) Indonesia, (c) Malaysia, (d) Singapore and (e) 
Timor Leste for the baseline period (1971-2000) in solid lines, mid-term projections (2031-2060) in dashed 
lines and long-term projections (2071-2100) in dotted lines. Significant projections passing the 5% level in 
t-test are plotted in red. 
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In contrast to temperature projections, the projections for precipitation show a lot 

more variations across countries and seasons which lend to difficult interpretation of 

the annual cycle plots. There are no significant changes (at the 5% level) in the annual mean 

precipitation cycle for Cambodia, Laos, Thailand, Vietnam, and Timor Leste. Where 

significant changes are observed in certain locations, these occur only in certain seasons. For 

example, some long-term projections for Brunei show a drier FM season and a wetter AMJ up 

to 3 mm/day each way. Similarly for Malaysia, the projections generally suggest a drier early 

half and a wetter later half of the year by up 3 mm/day each way as well. Projections for 

Philippines show similar projections for a drier early half and wetter later half, but these are 

insignificant. For Myanmar, significant precipitation changes in JJA are projected for most 

models to be up to 4 mm/day. For Singapore, there are some indications of drier JFM and JJAS 

by up to 3 mm/day. Overall, the models project no significant changes in mean precipitation. 

6.3. Seasonal mean temperature 

In this section the seasonal mean temperature projections are considered for the seasons, DJF 

(see Figure 6.6 and Figure 6.7), MAM (Figure 6.8 and Figure 6.9), JJA (Figure 6.10 and Figure 

6.11), and SON (Figure 6.12 and Figure 6.13). Generally, the temperature change patterns are 

very similar over the four seasons considered, with slightly higher warming rate during DJF 

(Figure 6.6 and Figure 6.7). Seasonal mean temperature shows monotonic increment 

towards the end-century with increment of 3-5°C. By mid-century, the estimated 

temperature is 2-4 °C warmer than the present day. The t-test of difference in means 

suggests that all temperature changes calculated at each of the grid points are significant at 

0.05 level. The increment shows considerable spatial variations with faster rate of warming 

simulated over land compared to the South China Sea. Also, in a broader sense, the warming 

rate over the mainland S.E. Asia is much faster as compared to the equatorial South China Sea 

regions. Specifically, the area over Thailand shows considerably large warming with a 

magnitude >5°C towards the end-century.  However, during the JJA (Figure 6.10 and Figure 

6.11), the larger warming appears near the equatorial region. The changes in temperature in 

HadCM3Q projections generally show warmer temperature in the future, for both the future 

time periods, compared to ECHAM5 projections. 
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Figure 6.6: Future changes in seasonal mean temperature (°C) for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.7: Future changes in seasonal mean temperature (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in DJF for ECHAM5, HadCM3Q0, 3, 10, 11 and 13 for the A1B scenario. 

 



 
88 Mid- and Long-term Climate Change Projections 

 

Figure 6.8: Future changes in seasonal mean temperature (°C) for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.9: Future changes in seasonal mean temperature (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.10: Future changes in seasonal mean temperature (°C) for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.11: Future changes in seasonal mean temperature (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.12: Future changes in seasonal mean temperature (°C) for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.13: Future changes in seasonal mean temperature (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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6.4. Seasonal minimum temperature 

Figure 6.14 to Figure 6.21 show the projected changes of the S.E. Asia seasonal minimum 

temperature for mid- and end-century periods. Generally, the warming patterns of the 

seasonal minimum temperature closely resemble that of the mean temperature. 

Nevertheless, the warming rate of the minimum temperature is slightly lower compared to the 

mean temperature towards the end-century except for DJF (Figure 6.14 and Figure 6.15). The 

projected changes of DJF minimum temperature shows higher warming rate over western and 

central mainland S.E. Asia similar to that projected for mean temperature but with a slightly 

higher warming rate (Figure 6.15 vs. Figure 6.7). Also, consistent with the mean temperature 

pattern changes, the projected largest change in the minimum temperature during JJA is 

located closer to the equator (Figure 6.19). 

 

Figure 6.14: Future changes in seasonal minimum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.15: Future changes in seasonal minimum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.16: Future changes in seasonal minimum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.17: Future changes in seasonal minimum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.18: Future changes in seasonal minimum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.19: Future changes in seasonal minimum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.20: Future changes in seasonal minimum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.21: Future changes in seasonal minimum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

6.5. Seasonal maximum temperature 

Figure 6.22 to Figure 6.29 depict the projected changes of the seasonal maximum temperature 

over the S.E. Asia region for the two selected future time periods. Generally, the warming 

patterns of the seasonal maximum temperature (like the seasonal minimum 

temperature) closely resemble that of the mean temperature except that the warming 

rate is higher in the maximum temperature towards the end-century. Over some areas, 

the projected changes of maximum temperature exceeded 5°C. Consistently, the seasonal 

maximum temperature shows higher warming rate over central mainland S.E. Asia except 

during JJA (Figure 6.27) when the larger changes are projected over the equatorial regions. The 

projections show modest inter-GCMs variations, with HadCM3Q10 projections consistently 

projecting lower warming rate of maximum temperature throughout the seasons. The 

differences are particularly clear over the equatorial regions. 



 
96 Mid- and Long-term Climate Change Projections 

 

Figure 6.22: Future changes in seasonal maximum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.23: Future changes in seasonal maximum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.24: Future changes in seasonal maximum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.25: Future changes in seasonal maximum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.26: Future changes in seasonal maximum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.27: Future changes in seasonal maximum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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Figure 6.28: Future changes in seasonal maximum temperature (°C) for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 

 

Figure 6.29: Future changes in seasonal maximum temperature (°C) for end-century (2071-2100) relative to 
the baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. 
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6.6. Diurnal temperature range 

It is useful to calculate the change in the diurnal temperature range projections to compare 

the relative warming rate between the maximum (day time) temperature and minimum (night 

time) temperature. Figure 6.30 to Figure 6.33 show the differences between the changes of the 

maximum temperature and the minimum temperature over the region by end-century. Areas 

with positive (negative) values indicate that the maximum (minimum) temperature is 

warming faster than the minimum (maximum) temperature. Generally, the minimum 

temperature (night time) warms faster than the maximum temperature (day time) 

during the boreal winter, except over northern Borneo and Peninsular Malaysia. The 

warming differences are approximately 2°C. This indicates possible smaller diurnal 

temperature range in the regions (in blue shades) under the warmer climate during boreal 

winter (DJF). However, during boreal summer (Figure 6.32), the maximum temperature 

warms faster over most of the regions except for western mainland S.E. Asia and northern 

Philippines. Generally, the characteristics of the diurnal temperature changes between 

ECHAM5 projections and the HadCM3Q projections are consistent except over the equatorial 

regions. The physical processes responsible for the projection changes spatial variations are 

however unclear.  

 

Figure 6.30: Difference in daytime and night time warming (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Positive 
(negative) values in red (blue) shades indicate relatively more warming in the day (night) time than in the 
night (day). 
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Figure 6.31: Difference in day time and night time warming (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Positive 
(negative) values in red (blue) shades indicate relatively more warming in the day (night) time than in the 
night (day). 

 

Figure 6.32: Difference in day time and night time warming (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Positive 
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(negative) values in red (blue) shades indicate relatively more warming in the day (night) time than in the 
night (day). 

 

Figure 6.33: Difference in day time and night time warming (°C) for end-century (2071-2100) relative to the 
baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Positive 
(negative) values in red (blue) shades indicate relatively more warming in the day (night) time than in the 
night (day). 

6.7. Seasonal mean rainfall 
Future changes in seasonal mean rainfall across S.E. Asia were also examined for the mid- and 

end-century. The changes in rainfall on seasonal basis were calculated as the percentage 

difference between the multi-year averaged seasonal rainfall of that 2 time periods and the 

simulated historical values averaged from 1971-2000. The significance of rainfall changes were 

assessed using a t-test of difference in mean and the areas with significant changes were 

hatched for easy visual comparison (Figure 6.34 - Figure 6.41). 
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Figure 6.34: Future percentage change in seasonal mean rainfall for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue (red) 
shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 

 

Figure 6.35: Future percentage change in seasonal mean rainfall for end-century (2071-2100) relative to the 
baseline period (1971-2000) in DJF for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue (red) 
shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 
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Figure 6.36: Future percentage change in seasonal mean rainfall for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue 
(red) shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 

 

Figure 6.37: Future percentage change in seasonal mean rainfall for end-century (2071-2100) relative to the 
baseline period (1971-2000) in MAM for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue 
(red) shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 
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Figure 6.38: Future percentage change in seasonal mean rainfall for mid-century (2031-2060) relative to the 
baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue (red) 
shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 

 

Figure 6.39: Future percentage change in seasonal mean rainfall for end-century (2071-2100) relative to the 
baseline period (1971-2000) in JJA for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue (red) 
shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 
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Figure 6.40: Future percentage change in seasonal mean rainfall for mid-century (2031-2060) relative to 
the baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue 
(red) shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 

 

Figure 6.41: Future percentage change in seasonal mean rainfall for end-century (2071-2100) relative to the 
baseline period (1971-2000) in SON for ECHAM5 and HadCM3Q0, 3, 10, 11, 13 for the A1B scenario. Blue (red) 
shades show projected wetter (drier) locations. Hatching shows areas with significant changes. 
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Unlike for temperature, changes in rainfall show large spatial and seasonal variations. 

Generally, the projections show drier climate over the sea and wetter climate over land. 

The land-sea contrast is more obvious towards the end-century. In all of the HadCM3Q 

projections, drier climate is projected over most areas during boreal winter except 

central mainland S.E. Asia (Figure 6.35). However, wetter climate was projected south 

of the equator in ECHAM5.  During JJA (Figure 6.39), all projections show wetter climate 

over land except HadCM3Q10 which projected central mainland S.E. Asia to be approximately 

40% drier compared to the baseline period.  The projected changes for SON towards the end-

century (Figure 6.41) are very similar to that of the JJA (Figure 6.39) with increasing seasonal 

rainfall of 20-40% over most of the areas that are projected to get wetter.  During MAM 

(Figure 6.37), the simulations projected a drying band at about 10°N with estimated rainfall 

decrement of 40% over the sea and slightly low decrement over land.  

Figure 6.42 summarises the seasonal rainfall change signals from the 6 sets of projections by 

the median of the change values. These summary plots are not intended to convey any notion 

of added confidence or likelihood, or lack thereof, of future projections in rainfall (due to the 

small ensemble size), but rather to allow for easier interpretation of the spatial variability of 

rainfall projections across the different models. The areas where all six projections have 

identical sign of changes are hatched. Generally, inter-model agreement is high except 

during winter (DJF). During MAM and SON, all projections point to increasing seasonal 

rainfall towards the end-century over land close to the equator. Over southern Philippines, 

drier climate was projected by all the simulations. It is worth noting that in comparison, the 

multi-model ensemble from IPCC AR5’s report (IPCC, 2013: Figure 12.22) project that seasonal 

mean changes are within one standard deviation of internal variability for the RCP8.5, hence 

not statistically significant. 
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Figure 6.42: The median values (from the 6 simulations) of the changes of the late century seasonal 
rainfall. The areas where all the 6 simulations agree on the change sign are hatched. 

6.8. Southwest Summer Monsoon 
The time–latitude cross section of precipitation averaged for the period 2071-2100 is shown in 

Figure 6.43 (upper panel). The general precipitation patterns in the future are similar to the 

baseline period. However, the detailed distributions show some discrepancy among the 

simulations, particularly during the southwest summer monsoon period in the region from 

5°N northwards. Lower panel of Figure 6.43 depicts the changes between the end-century 

precipitations versus the baseline period. It can be seen that during the summer monsoon 

(JJAS), generally more rainfall is projected in the northern part of the region 

(approximately from 20°N northward), whereas drier conditions are projected for the 

Maritime Continent. Compared to the multi-model ensemble from IPCC AR5’s report (IPCC, 

2013: Figure 12.22), similar projections were given for the RCP8.5, i.e. for wetter north and drier 

south for JJA, but these are not statistically significant in the AR5 report (within one standard 

deviation of internal variability). The wetter conditions in the northern region can be 

explained by the intensification of monsoon, where stronger southwest winds bring more 

moisture from the sea (Bay of Bengal and South China Sea) to the region (Figure 6.49).  

The projection of rainfall changes between the mid-century and the baseline period (Figure 

6.44) show similar changes to the end-century period, i.e. wetter conditions in the northern 

region and drier conditions in the Maritime Continent during the summer monsoon. 
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However, the amplitudes of changes in the mid-century period are less significant compared 

to the end-century. 

 

Figure 6.43: Time-latitude cross-section over longitudes 90E to 135E for precipitation in 6 simulations. 
Upper panel:  average precipitation (mm/day) for the period 2071-2100. Lower panel: precipitation changes 
(%) between 2071-2100 and the baseline period. 

 

Figure 6.44: Same as Figure 6.43, but for the mid-century period 2031-2060. 

In Figure 6.45 and Figure 6.46, decrease in the amount of extreme seasonal rainfall (95th 

percentile threshold) is projected in the Southwest Monsoon season of the mid- and end-

century in the region east of 100°E and south of 5°N (eastern Maritime Continent). In the 

north-western part of S.E. Asia (mainland S.E. Asia), however, extreme wet days are projected 

to be more intense. This is true for the HadCM3Q projections in general, but for ECHAM5 it 

projected an increase in the extreme rainfall throughout most of the region, including the 

eastern Maritime Continent. With the projected intensification of the Southwest Monsoon 
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extreme rainfall in both time periods, and the possibility of redistribution of rainfall towards 

more intense monsoons – as suggested by projected reduction in the mean rainfall during JJA 

(Figure 6.38 and Figure 6.39) – it can be expected for the dry phase of the monsoon to get 

drier. 

 

Figure 6.45: 95th percentile amounts of seasonal rainfall during JJAS in mid-century (2031-2060). 

 

Figure 6.46: 95th percentile amounts of seasonal rainfall during JJAS at end-century (2071-2100). 
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Figure 6.47: 95th percentile amounts of seasonal rainfall during DJF in mid-century (2031-2060). 

 

Figure 6.48: 95th percentile amounts of seasonal rainfall during DJF at end-century (2071-2100). 
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Figure 6.49: End-century changes of average 850 hPa wind (vectors) and rainfall (scalar) for June, July, 
August and September (left to right columns) compared to the baseline period (1971-2000). From top to 
bottom are the different model projections, HadCM3Q10, 11, 13, 0, 3 and ECHAM5. Purple (green) shades 
indicate increase (decrease) in rainfall intensity during that month. 
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Figure 6.50: Same as Figure 6.49 but for December, January, and February. 

The end-century of zonal wind patterns and changes at 850 hPa as shown in Figure 6.51 for all 

models project a generally positive westerly wind change during the Southwest Monsoon 

implying the strengthening of the westerly winds in the higher latitudes and the weakening 

easterlies in the lower latitudes (equatorial regions) (Figure 6.51). The pattern of changes is 

similar across all projections, but with ECHAM5 projecting more modest changes than the 

HadCM3Q projections. Changes become more pronounced towards the end-century. 
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Figure 6.51: The mid- and end-century of zonal (east to west) wind patterns and change at 850 hPa over 
longitudes 90E to 135E. 

At 200 hPa (Figure 6.52), the zonal wind patterns projected in all models for both time periods 

are similar.  During the first half of the year, a general strengthening of the westerly winds is 

projected. This would have the effect of weakening the upper level easterly above the 

equatorial regions on one hand, and on the other, strengthening of the upper level westerly 

winds in the higher latitudes. During JJA, increase in easterly winds is projected in general. 
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Figure 6.52: Same as Figure 6.51 but for 200 hPa. 

6.9. Northeast Winter Monsoon 
End- and mid-century changes in 850 and 200hPa zonal winds are shown in Figure 6.51 and 

Figure 6.52. By the end-century, all models with the exception of HadCM3Q10 (which project 

only very small changes) project a small decrease in the magnitude of DJF 850 hPa winds, but 

an increase in 200 hPa winds. Future changes of rainfall in the winter monsoon (DJF) are 

depicted in Figure 6.43 and Figure 6.44 for the mean rainfall, as well as Figure 6.47 and Figure 

6.48 for extreme rainfall (defined as the change in the threshold of the 95th percentile). The 

scale of projected precipitation changes (e.g. increases over land) for extremes during 

DJF (Figure 6.47 and Figure 6.48) is not as significant as the Southwest Monsoon. End-

century changes in the 95th percentile of DJF precipitation vary between the six model runs. 

All models project an increase of 10-20% over the Maritime Continent, although the spatial 

patterns of change vary. Changes over Vietnam, Cambodia, Thailand and Myanmar are more 

varied, with certain models (HadCM3Q0, Q11 and Q13) projecting overall decreases, but 

others, particularly ECHAM5, project an increase. 
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Similar to the summer monsoon, but not as widespread, the HadCM3Q models projected 

increase in mean rainfall in the northern part of the region during DJF, whereas drier 

conditions are projected for the Maritime Continent, particularly in February (Figure 6.43 and 

Figure 6.44). The drier conditions are extended more northwards during DJF compared to the 

summer time. In general, amplitudes of changes in the mid-century period scale to the end-

century period (wet projections get wetter, dry projections get drier towards the end-century). 

In contrast to HadCM3Q projections, ECHAM5 projections do not provide the same signs of 

rainfall changes for both mid-century and end-century periods. 

6.10. Extreme rainfall indices 
Future changes in annual maximum one day rainfall (Rx1day), annual maximum consecutive 

five days rainfall (Rx5day) and annual maximum of consecutive dry days (CDD) for S.E. Asia 

were analysed for the two future time periods in the mid-century (top row) and the end-

century (bottom row) in the following plots (Figure 6.53 to Figure 6.55). 

 

Figure 6.53: Projected changes in mean annual maximum 1-day precipitation (Rx1day), from HadCM3Q0, 3, 
10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row). Red shades show decrease 
in rainfall intensities, while blue shades show increase in rainfall intensities. 

In general, Rx1day (Figure 6.53) and Rx5day (Figure 6.54) for the end-century are 

projected to increase in areas north of the 15°N latitude. This includes the north of 

Vietnam, Laos, part of Thailand, China and northern part of the Philippines with the changes 

ranging from 20 to 60 mm/day. Meanwhile, majority of the areas south of the 15°N latitude 

including the south of Vietnam, the rest of Thailand, Cambodia, Philippines, Malaysia, and 

Indonesia are projected with weaker changes of both signs for Rx1day, while the Rx5day is 

mostly positive even over this region. When assessed at very local levels, these changes are 

strongly dependent on the driving GCM. All six projections in both indices show that the end-

century projections scale to the mid-century projections to some extent, especially with 

regards to the larger positive changes (blue regions). The only exception is ECHAM5 

projections which project intensification for a wider region in the south (e.g. Java, Borneo and 

Sumatra) compared to the other projections. To compare, the IPCC AR5 (IPCC, 2013: Figure 
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12.26) reports increase in projections of Rx5day for the entire region under RCP8.5 and these 

are statistically significant. 

 

Figure 6.54: Projected changes in mean annual maximum consecutive 5-day precipitation (Rx5day), from 
HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row). Red shades 
show decrease in rainfall intensities, while blue shades show increase in rainfall intensities. 

Figure 6.55 projects the change in annual maximum of CDD for S.E. Asia. In general, all 

projections show an increase in CDD (i.e. longer dry spells) south of 15°N latitude in 

both time periods. However, there are more spatial variations in projections north of 15°N 

latitude in the mid- and end-century. For example, in the mid-century, ECHAM5 projects 

increased number of dry days in Vietnam and eastern part of China while the other models 

indicate a decrease in number of dry days. At the end-century, the HadCM3Q10 and ECHAM5 

project an increase in CDD (longer dry spells) in more areas of S.E. Asia, whereas the other 

models project a decrease in the CDD for mainland S.E. Asia. It is worth noting that over the 

Maritime Continent, the widespread positive change for CDD is associated with a change of 

extreme rainfall which is also mostly positive, suggesting a future climate in which both floods 

and droughts might be more frequent. In comparison to the SREX (IPCC, 2012), most of the 

region’s western parts were projected to experience increase in CDD as well, for the mid- and 

end-centuries. The IPCC report (IPCC, 2013: Figure 12.26), projects increase in CDD over a 

wider region Southeast Asia for the end-century period under the RCP8.5 scenario. These are 

statistically significant at 5% for the southern half of the region. 
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Figure 6.55: Projected changes in mean CDD, from HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century 
(top row) and end-century (bottom row). Red shades show decrease in rainfall intensities, while blue 
shades show increase in rainfall intensities. 

6.11. Extreme temperature indices 
The projected changes for S.E. Asia’s extreme temperature indices of annual maximum day 

time temperature (TXx), annual maximum night time temperature (TNx), annual maximum 

average daily temperature (TMx), and annual minimum average daily temperature (TMn) are 

shown in Figure 6.56 to Figure 6.59. For these indices, two 30-year time periods were 

calculated for mid-century (top row) and end-century (bottom row), relative to baseline 

period 1970-2000. 

In general, a 1-3°C change is projected for most land regions of S.E. Asia across all RCM 

projections for the mid-century and 3-5°C change for the end of the century. The 

magnitudes of change for these two time periods are comparable across all four 

indices considered and it is comparable to the largest changes in the seasonal temperatures 

for the same periods. Another common feature among all four indices is the relatively warmer 

projections of models HadCM3Q11 and Q13. In most cases, the ECHAM5 model’s projections 

are similar to the projections of models HadCM3Q3 and Q10 in terms of the magnitude and 

spatial distribution of warming. Northern and eastern mainland S.E. Asia, and inland Borneo 

and Sumatra islands are projected to experience relatively more pronounced warming than 

the rest of the region and this is consistent with the projected changes in seasonal 

temperature discussed in section 6.3. Over the sea, the warmer models of HadCM3Q11 and 

Q13, project relatively more warming over southern (between Borneo and Peninsular 

Malaysia) and eastern South China Sea (west of Philippines), as well as parts of the Andaman 

Sea. 
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Figure 6.56: Projected changes in annual mean TXx (annual maximum day time temperature in °C), from 
HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row). 

 

Figure 6.57: Projected changes in annual mean TNx (annual maximum night time temperature in °C), from 
HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row) 
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Figure 6.58: Projected changes in annual mean TMx (annual maximum daily average temperature in °C), 
from HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row). 

 

Figure 6.59: Projected changes in annual mean TMn (annual minimum daily average temperature in °C), 
from HadCM3Q0, 3, 10, 11, 13 and ECHAM5 for mid-century (top row) and end-century (bottom row). 

6.12. Five-year return level for maximum daily temperature and 

precipitation 

The climate change signals of 5-year return level of two indices TMx and RX1day for two RCM 

simulations, HadCM3Q0 and ECHAM5, at end-century (2071-2100) are shown on Figure 6.60 

and Figure 6.61. In comparison with the figures in the earlier sections for the corresponding 

indices (Figure 6.53 and Figure 6.58), both temperature and rainfall 5-year return levels show 

similar patterns but the magnitude of the change is larger for the more extreme event. For a 

different 20-year return level, i.e. events expected to be exceeded after 20 years (not shown), 

the same pattern of changes for both indices were observed but extreme precipitation index 

was still increasing while the temperature index was levelling off. This outcome suggests the 
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tendency to an increased climate change signal with the increased rarity of the event, at least 

up to the 5-year return level for temperatures and for rarer return level for rainfall, while the 

patterns of changes are not too different. 

 

Figure 6.60: Projected changes in 5-yr return level values for Rx1day for HadCM3Q0 and ECHAM5 for the 
end-century period. 

 

 

Figure 6.61: Projected changes in 5-yr return level values for TMx for HadCM3Q0 and ECHAM5 for the end-
century period. 
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8. List of Abbreviations 

AR5 
Fifth Assessment Report 

ASEAN 
Association of South East Asian Nations 

CCRS-MSS 
Centre for Climate Research Singapore, Meteorological Service Singapore 

CDD 
Annual Maximum of Consecutive Dry Day 

CMIP 
Coupled Model Intercomparison Project 

CORDEX 
Coordinated Regional climate Downscaling EXperiment 

DJF 
December  - February season 

GCM 
Global Climate Model 

IPCC 
Intergovernmental Panel of Climate Change 

JJA 
June - August season 

LBC 
Lateral Boundary Conditions 

MAM 
Mar - May season 

MME 
Multi-Model Ensemble 

MOHC 
Met Office Hadley Centre 

NMHS 
National Meteorological and Hydrological Services 

PPE 
Perturbed Physics Ensemble 

QUMP 
Quantifying Uncertainty in Model Predictions 

RCM 
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RI 
Research Intitute 

Rx1day 
Annual Maximum of 1-day Rainfall 

Rx5day 
Annual Maximum of Consecutive 5-day Rainfall 

S.E. Asia 
Southeast Asia 

SEACAM 
Southeast Asia Climate Analysis and Modelling 

SON 
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September - November season 
SRES 

Special Report on Emissions Scenarios 
TMn 

Mean of annual minimum average daily temperature 
TMx 

Mean of annual maximum average daily temperature 
TNx 

Annual maximum night time temperature 
TXx 

Annual maximum day time temperature 
UKFCO 

United Kingdom Foreign Commonwealth Office 
 


