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 3.1 Introduction 
 

Uncertainties in our knowledge of the response of the climate to increasing atmospheric 
concentrations of greenhouse gases are known to be large for some variables, due 
partly to differences in the formulation of climate models used to generate this 
information. In order to provide information about future climate that is consistent with 
current science and therefore relevant to policy applications, regional projections for use 
in impacts assessments and planning must be designed to account for this uncertainty. 
 
The Coupled Model Inter-comparison Project 5 (CMIP5) brings together a co-ordinated 
set of climate model simulations from climate modelling centres around the world (Taylor 
et al, 2012).  Like the preceding CMIP3 experiment, this has allowed a co-ordinated 
assessment of each model’s relative strengths and weaknesses, as well as the 
quantification of the range of projections across the contributing models.  In contrast to 
CMIP3, the suite of datasets distributed via CMIP5 includes 6-hourly instantaneous 
fields of prognostic variables from which lateral boundary conditions (LBCs), required for 
driving regional climate models (RCMs), can be derived.  This provides an opportunity to 
generate higher-resolution baseline and future climates by downscaling with multiple 
combinations of global and regional climate models, allowing exploration of the 
implications of modelling uncertainty in ensembles of high-resolution projections for one 
or more regions of the world. 
 
Sub-selecting a representative sub-set from available general circulation models (GCMs) 
provides an efficient approach to generating a set of higher-resolution regional climate 
projections which represent the range of future climates indicated by the full ensemble 
(e.g. McSweeney et al., 2012).  In addition to providing a framework for a 
computationally efficient project, the provision of a sub-set of representative models 
provide a dataset which is more manageable in terms of storage, distribution and 
application to impacts assessments. 
 
The sub-selection process also provides the challenge and opportunity to discount any 
models which we find unsatisfactory in their representation of key processes or features 
of climate. The down-weighting or exclusion of GCMs has been explored in a number of 
studies (e.g. Tebaldi et al., 2005; Greene et al., 2006; Tebaldi and Sanso, 2009; 
Watterson and Whetton, 2011; Sexton et al., 2012). However this is a challenging 
problem open to further investigation (see Knutti, 2010 for a discussion of the issues), 
hence IPCC has to date avoided attempting to weight individual models in its 
presentations of future projections.  While it is clear from the global analyses of CMIP3 
GCMs in Gleckler et al (2008) that some models perform substantially better and worse 
than others when compared via a range of global performance metrics, within such an 
assessment lies a range of relative merits of each different model across a wide range of 
processes and phenomena.  Here, we focus on a regional performance assessment for 
SE Asia. Rather than attempting quantitative estimation of individual model weights, we 
capitalise on the differences in performance in order to exclude a subset of model 
projections which, for our more specific application, do not represent the most relevant 
processes realistically enough to generate plausible scenarios of future change.   
 
This report describes the methodology employed to select a sub-set of 10 of the 
available CMIP5 GCMs which will be used to drive the Hadley Centre’s latest Regional 
Climate Model (RCM), HadGEM3-RA (Moufouma-Okia and Jones, 2015; Karmacharya 
et al, In Review), in order to generate higher-resolution scenarios of future climate for 
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Singapore under two scenarios of future atmospheric GHG concentrations (RCP4.5 and 
RCP8.5).   
 
Section 3.2 describes the rationale for the sub-selection methodology.  Section 3.3 
summarises the results on the model evaluations and consequent elimination decisions 
(a full account of the evaluation of the models against all criteria can be found in 
Appendix 3.3). Section 3.4 describes the implementation of the sub-selection from 
remaining models, and results and their implications are summarised in Section 3.5. 
 

3.2 Rationale for sub-selection methodology  
 

McSweeney et al (2012) addressed ensemble sub-selection using a 2-stage process: 
The models were first assessed in their simulation of a realistic baseline climate, with 
unsatisfactory models being eliminated before; secondly, a subset of n models was 
selected to span the range of projected changes in temperature and precipitation.   
 
As described in McSweeney et al (2012), a regional scale projection can be eliminated if 
the relevant model clearly fails to represent a feature or process that is key to 
representing the local large-scale-regional climate realistically.  The criteria for 
elimination are underpinned by the following key guidance points from Knutti (2010): 

 Metrics and criteria for evaluation should be demonstrated to relate to projection 

 It may be less controversial to down-weight or eliminate models that are clearly 
unable to mimic important processes than to agree on the best model. 

 Process understanding must complement ‘broad brush metrics’. 

For each available model, the McSweeney et al. (2012) approach requires us to assess 
for every model, whether the shortcomings in its simulation of baseline climatology are 
significant enough to render its projections as ‘implausible’, and thus should be 
eliminated.  For this study, we use an amended version of the McSweeney et al (2012) 
approach where, by assessing the baseline realism and characteristics of the projection 
simultaneously, we only need to consider the ‘plausibility’ of a model if its projections 
out-lie the ensemble.  This is because elimination of an outlier would restrict the range of 
future outcomes that we could capture with a subset.   If Model X sits well within the 
range of future projections compared with other models, then we can easily avoid 
including this model in favour of others which give similar projections, but in which we 
have more confidence, avoiding the difficult question of whether the projection should be 
considered implausible.  A more difficult decision arises if the projections from Model X 
lie outside the range of the rest of the ensemble; in this case we must make the difficult 
decision based on our best knowledge. However, by employing this approach we 
minimise the burden and impact of this decision-making process.  This approach to the 
decision making is summarised as a matrix in Figure 3.1. Here the most important and 
difficult decision occurs in allocating a model its position on the performance scale (‘y-
axis’ in Figure 3.1) between ‘Implausible’ and ‘Significant Biases’.   Our criterion in this 
situation is that if it is clear that a model fails to simulate a large-scale process that is a 
significant driver of the climate of a region, for example extra-tropical storm tracks or 
monsoonal circulations, then this model is unlikely to correctly capture how global 
climate change will manifest itself over the region. It will be unlikely to, for example, 
transport realistically any additional heat or moisture resulting from climate change into 
or out of the region.  Where we find evidence of very significant shortcomings of this 
nature in a model then we feel it reasonable to class it as ‘Implausible’ and eliminate it. 
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In addition, we class a model as ‘Implausible’ if it shows ‘significant biases’ across 
multiple climatological features of interest, even if its simulation of any individual 
phenomenon is not quite poor enough to warrant exclusion on that basis alone. Here, 
the assumption is that widespread biases would be an indicator of serious shortcomings 
in the model’s general representation of climate system processes. Models which show 
shortcomings in a more restricted subset of emergent properties are not eliminated 
outright, but classed as having ‘Biases’ or ‘Significant Biases’. 
 
  Model Projections 

  Outlier Other models predict similar 
outcomes too. 

M
o

d
e

l P
e

rf
o

rm
an

ce
 

Model suffers shortcoming(s)  
sufficiently serious to 
significantly reduce our 
confidence in its projections 
(‘Implausible’) 
 

Exclude:  we should carefully 
document justification for this, 
however, as exclusion will affect 
the range of outcomes. 

Exclude: We can avoid using 
these models without much 
affecting the range of projected 
outcomes. 

Model suffers significant 
shortcomings which we cannot 
clearly link to confidence in its 
projections. (‘Biases/Significant 
Biases’) 

Include: we do not have strong 
enough evidence to exclude 
these outcomes from the 
projections. 

Exclude: We can avoid using 
these models without much 
affecting the range of projected 
outcomes. 

Model performance is 
satisfactory (‘Satisfactory’)  

Include Include 

 
Figure 3.1: Decision making matrix for potential elimination of ensemble members.  

 
The assessment of the credibility of CMIP5 historical simulations for the assessment of 
model realism combines analyses for this report with results from published literature, 
where available.  A limitation on this study is that we cannot fully validate each CMIP5 
model within the scope of this study – the CMIP5 archive is still relatively new and 
results will continue to appear in the literature over the coming years.  While the cited 
published literature offers rigorous and well documented analyses of model behaviour by 
experts in their field, the studies are often limited to an incomplete set of CMIP5 models.  
 
The validation criteria were agreed between scientists with knowledge of local 
meteorology and its large scale influences, and scientists with prior experience in GCM 
sub-selection.  The proposed criteria aim to identify some key aspects of large scale 
model behaviour which are important for simulating the local meteorological 
characteristics realistically, in terms of both the climatology and variability, where 
possible.  The large-scale aspects of climate that we assess in the GCMs will be passed 
to the regional model via the lateral boundary conditions.  Smaller scale processes – for 
example, the local scale convective rainfall events that can lead to very extreme rainfall 
events of short duration, and processes relating strongly to interactions with the land 
surface will be determined by the regional model.  These can only be assessed after 
downscaling. 
 
Not all models in the CMIP5 archive are available for downscaling – a subset of 28 of 
around 40 models have the 6-hourly variable fields available that are required to drive 
regional models (see Appendix 3.2 for a list of all models).  However, we present the 
results of assessments for all models for which historical simulations are available in 
order to give a better impression of the relative strengths and weaknesses. In several 
cases, particular variables were missing from the archive at the time of assessment. 
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3.3 Summary of performance and candidate models for 
elimination  
 

All models were assessed for their ability to represent key aspects of climate in the 
region including; the south-west and north-east monsoon circulations, the migration of 
the Inter-Tropical Convergence Zone (ITCZ) and regional rainfall patterns, sea-surface 
and near-surface air temperatures and key modes of variability – the El Nino Southern 
Oscillation (ENSO) and The Madden Julian Oscillation (MJO).  Tables 3.1 and 3.2 
summarise the assessment carried out and the results for each model under each of the 
categories considered full details of the evaluation of each of these characteristics can 
be found in Appendix 3.3.  
 
Notably, 2 models were found to have such poor representation of the south west 
monsoon circulation, that they were classed as ‘implausible’ – these models were 
MIROC-ESM and MIROC-ESM-CHEM (see Figure 3.2).  In these models, regions of 
strong the 850hpa flow that characterises the southwest monsoon does not extend far 
enough east to reach south-east Asia.  We therefore conclude that those models cannot 
provide a useful indication of how any changes to this important feature of the regional 
climate might affect South East Asia and Singapore. 

 
Figure 3.2: South west monsoon circulation in ERA40 as the ‘best estimate’ of observed climatology 
and in the MIROC-ESM GCM. 

 
Based on the assessments for each of the climate features listed in Tables 3.1 and 3.2, 
each model is allocated an overall score based on the number of criteria which are 
flagged, and the severity of the flags. Models are allocated an overall category as 
follows: 

 Overall ‘Implausible’: Any one category is scored ‘implausible’, or four or more 
‘Significant Biases’. 

 Overall ‘Significant Biases’: Two ‘Significant Biases’ or three or more ‘Biases’/ 
Significant Biases’, where at least one is ‘Significant Biases’.  

 Overall ‘Biases’: One ‘Significant Biases’, or three or more ‘Biases’,  

 Overall ‘Satisfactory’: Fewer than three ‘Biases’. 

 
Additionally to the criteria listed above, in cases where two models from the same 
modelling centre which have similar formulation are grouped into the same overall 
category but have different numbers of ‘flags’, we down-grade the model with the most 
‘flags’. This applies to  the models bcc-csm1-1, IPSL-CM5A-LR and HadGEM2-CC, 
which are all overall ‘biases’ ratings despite having only two ‘biases’ flags in order to 
differentiate their lesser performance compared to models bcc-csm1-1-m, IPSL-CM5A-
MR and HadGEM2-ES, respectively. 
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We compare the performance summary information in Table 3.2 with the projections for 
future change in mean temperature and rainfall in Figure 3.3 in order to assess which 
models are to be eliminated, according to the decision-making framework set out in 
Figure 3.1. Here we explore the areal mean change in both temperature and rainfall as 
well as exploring changes in the characteristics of the rainfall change (see McSweeney 
et al., 2012) by showing the root-mean-square of changes averaged over the region (an 
indicator of the overall magnitude of rainfall changes, which does not ‘average out’ 
increases and decreases) and the spatial correlation of the changes from each model 
with the ensemble mean (this gives an indication of whether the spatial pattern of rainfall 
change is ‘typical’ of the ensemble thus having higher correlation with the ensemble 
mean, or is ‘atypical’, having low or negative correlation).  The characteristics of the 
projections of future climate are determined by comparing projections under RCP8.5 
(see Moss et al., 2010 for a description of the RCP scenarios) with their corresponding 
historical simulations. This RCP scenario has the largest greenhouse gas forcing and 
therefore we can expect the signal-to-noise ratio (the relative size of the long-term trend 
compared with the natural variability) to be the largest, and providing the clearest 
information about each model’s response. The outcomes of the following observations 
and decisions are summarised in Table 3.3. 
 
Table 3.1: Summary of evaluation methods employed.  Full results of evaluation for each criteria are 
available in Appendix 3.3. 

Evaluation Criteria Evaluation method 

SW monsoon Comparison by visual inspection of circulation at 850hpa in models with ERA40 
(Uppala et al., 2003) for JJAS, looking for evidence that key features are captured. 
Misplaced flow or mis-directed flow are considered more serious biases than 
systematic errors in strength of flow. 

Summer monsoon 

variability 

Indices representing characteristics of the variability of the summer monsoon 
published in Sperber et al 2012. The indices include those representing the 
relationship between ENSO (Nino3.4) and SW Monsoon intensity (indicated by All-
India Rainfall, AIR) , characteristics of the East Asian summer Monsoon, and 
indices describing the magnitude of variability, and characteristics of the life cycle 
of intraseasonal variability (Boreal Summer Intra-seasonal variability BSISV). 

NE monsoon Comparison by visual inspection of circulation at 850hpa with ERA40 in NDJ, 
looking for evidence that key features are captured. A key detail of this circulation 
for Singapore is the North-easterly flow over the South China Sea directing near-
surface flow towards the Malaysian peninsula. 

ITCZ migration Comparison by visual inspection of Hovmoller plots of the seasonal migration of 
the latitude of peak rainfall in GCMs with GPCP2.2 (Adler et al, 2003) 
observations. 

Regional annual cycles 

of temperature and 

precipitation 

Annual cycles of average rainfall and temperature were calculated as areas 
averages over sub-regions and compared with multiple observed datasets.  
Poorest models were identified using the correlation of the seasonal cycles and 
root-mean-square errors (RMSE). 

SST and mean air 

temperature 

Mean and spatial patterns of average air temperature over land were compared 
with CRU (Mitchell et al., 2005) observations, mean biases in SST compared with 
HadISST observations (Rayner et al.,2003). 

Cold tongue bias Comparison of cold tongue bias features in models with HadISST (Rayner et al, 
2003) by visual inspection and use of a cold-tongue bias index proposed by Hirota 
and Takayabu (2013). 

ENSO Use of metrics published in Guilyardi et al (2012) and, in greater detail, Bellenger 
et al. (2014).  These assess in CMIP5 models a number of metrics of ENSO 
amplitude (NINO3 SST standard deviation), structure (Nino3 vs Nino4 amplitude), 
frequency (Root Mean Square Error, RMSE, of Nino3 SSTA spectra) and heating 
source (Nino4 precipitation standard deviation), and additionally several process-
based metrics which reflect the role of the atmosphere response to ENSO, and 
therefore represent an assessment of whether the models capture the key 
processes required to represent ENSO realistically. 

MJO indices Use of published process-based indices from Kim et al (2014). 
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Table 3.2: Summary of model performance (Note that for clarity we only show results for models for 
which 6hourly fields are available for downscaling). Pink=’Implausible’, Orange=’Significant Biases’, 
yellow= ‘Biases’ and green =’Satisfactory’.  Grey indicates cases where data were not available for 
analysis. 
Overall performance scores in the final column are allocated based on the following criteria: Criteria 
for overall ‘Implausible’ (Pink): Any one category is scored ‘implausible’, or 4 or more categories 
scored ‘Significant biases’. Overall Significant Biases: Two ‘Significant Biases’ or three 
‘Biases’/’Significant Biases’, of which at least one is ‘Significant biases’. Overall Biases (Yellow): 
One ‘Significant Biases’, or two or more ‘Biases’*. Overall Satisfactory: Fewer than three ‘Biases’*. 
* Indicates a model that has been downgraded from overall ‘satisfactory’ to ‘biases’ in order to 
differentiate between the performance of that model and another from the same centre with similar 
formulation. 
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ACCESS1-0 
         

ACCESS1-0 

ACCESS1-3          ACCESS1-3 

bcc-csm1-1 
         

bcc-csm1-1* 

bcc-csm1-1-m 
         

bcc-csm1-1-m 

BNU-ESM 
         

BNU-ESM 

CanESM2          CanESM2 

CCSM4 
         

CCSM4 

CMCC-CM 
         

CMCC-CM 

CNRM-CM5 
         

CNRM-CM5 

CSIRO-Mk3-6-0          CSIRO-Mk3-6-0 

EC-EARTH          EC-EARTH 

FGOALS-g2 
         

FGOALS-g2 

FGOALS-s2 
         

FGOALS-s2 

GFDL-CM3          GFDL-CM3 

GFDL-ESM2G          GFDL-ESM2G 

GFDL-ESM2M 
         

GFDL-ESM2M 

HadGEM2-CC 
         

HadGEM2-CC* 

HadGEM2-ES          HadGEM2-ES 

inmcm4          inmcm4 

IPSL-CM5A-LR 
         

IPSL-CM5A-LR* 

IPSL-CM5A-MR 
         

IPSL-CM5A-MR 

IPSL-CM5B-LR          IPSL-CM5B-LR 

MIROC5          MIROC5 

MIROC-ESM 
         

MIROC-ESM 

MIROC-ESM-CHEM 
         

MIROC-ESM-CHEM 

MPI-ESM-LR          MPI-ESM-LR 

MPI-ESM-MR          MPI-ESM-MR 

MRI-CGCM3 
         

MRI-CGCM3 

Nor-ESM1-M 
         

Nor-ESM1-M 

 

 

Firstly we note that models MIROC-ESM and MIROC-ESM-CHEM are flagged as 
‘implausible’ due to their particularly unrealistic representation of the SW Monsoon, 
particularly over south-east Asia, and are therefore eliminated regardless of the 
characteristics of their projections.  We note however, that their projections are not 
outliers in the mean changes in temperature and rainfall, but they do demonstrate spatial 
patterns of change that are ‘atypical’ of the ensemble in most seasons.  The inmcm4 
model is also flagged as ‘implausible’, due to the identification of multiple significant 
shortcomings.  This  model  stands  out  as  an  outlier  in  its  future  projections of mean  
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Figure 3.3: Characteristics of the projected changes by 2070-2100 from 1961-90 from each GCM 
compared with their overall performance rating.  Left: Change in mean rainfall vs change in mean 
temperature over the SEA region.  Right: Root-mean-square change in rainfall vs spatial correlation 
between each model and the ensemble mean. Pink=Models with projections deemed ‘implausible’, 
orange: Models rated ‘Significant biases’ overall; Yellow: Models rated ‘Biases’ overall; black: 
models rated ‘satisfactory’ and grey: models for which 6-hourly fields for downscaling are not 
available. 
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climate, as the model with the lowest increase in mean temperature, but also as the 
model which throughout all seasons occupies the ‘cool and wet’ region of the scatter 
plot. Omitting inmcm4 therefore has significant implications for the range of large-scale-
regional climate change characteristics sampled in subsequent regional climate model 
simulations. MSS climate research experts were consulted regarding the overall 
assessment of inmcm4, and the overall rating above is based on an agreed joint 
assessment.  
 
Of those models with an overall ‘Significant Biases’ rating, FGOALS-g2 and IPSL-CM5B-
LR projections do not lie outside of the range of change in mean temperature, but 
display atypical spatial characteristics in rainfall change in some seasons.  In the case of 
FGOALS-g2, we have additional concerns about the reliability of the data submitted to 
the CMIP5 archive1, and the uncertainty in the data submitted leads us to exclude this 
model partially for practical reasons. IPSL-CM5B-LR is among several models for which 
the spatial patterns of rainfall changes are relatively ‘atypical’.  However, by retaining 
some of the other ‘atypical’ models with either ‘Satisfactory’ or ‘Biases’ ratings 
preferentially we can retain a good diversity in the spatial patterns of rainfall change 
amongst remaining models.   CSIRO-mk3-6-0 is a very clear outlier, projecting the driest 
climate in the region in DJF by some margin, as well as having the largest magnitude of 
rainfall response (evident in the root-mean-square changes), and an atypical response in 
the spatial patterns of rainfall change in DJF. The model is therefore retained. Neither 
MIROC5 nor EC-EARTH lie beyond the range of other models in the ensemble in the 
characteristics of change addressed. 
 
 
Table 3.3: Completed decision-making matrix for model selection. Eliminated models are highlighted 
in shaded cells. * FGOALS-g2 is starred because there remain uncertainties in the dataset 
submissions which are part of the reason for their elimination.  

 
 
 

Outlier Other models predict similar 
outcomes. 

We are confident that 
the model is 
implausible.  

MIROC-ESM 
MIROC ESM-CHEM 
Inmcm4  
 

 

Model demonstrates 
Biases/Significant biases 
in performance 

CSIRO-Mk3-6-0 
NorESM1-M 
 

Bcc-csm1-1 
EC-EARTH  
HadGEM2-CC 
IPSL-CM5A-LR 
IPSL-CM5B-LR 
MPI-ESM-LR 
FGOALS-g2 * 
MIROC5 
MRI-CGCM3  

Model is satisfactory HadGEM2-ES 
ACCESS1-0 
ACCESS1-3 
Bcc-csm1-1-m 
BNU-ESM 
CanESM2 
CMCC-CM 

CCSM4 
CNRM-CM5 
GFDL-CM3 
GFDL-ESM2G 
GFDL-ESM2M 
IPSL-CM5A-MR  
MPI-ESM-MR 

                                                
1
 FGOALS-s2 historical runs were recently withdrawn completely from the CMIP5 archive due to suspected 

errors in the mean temperature.  FGOALS-g2 data initially submitted were replaced due to inconsistencies 
and errors in the labelling of ensemble members.  While this has been corrected, some further sources of 
uncertainty remain in the dataset version numbering.   
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Of the models with a ‘Biases’ overall rating IPSL-CM5A-LR is the model with the largest 
overall annual temperature and rainfall increase, but not does not lie significantly outside 
of the range of other models – its projections tend to be similar in characteristics to the 
high-resolution version of the same model, IPSL-CM5A-MR and so the model is 
eliminated.  NorESM1-M is retained due to its ‘atypical’ rainfall pattern projections in 
order to maintain diversity in this aspect of the remaining models. All other models 
categorised with ‘Biases’ are eliminated. 
 

3.4 Sub-selection from remaining models 
 
We have determined which of the CMIP5 models should be eliminated based on their 
performance and we now select a subset which best spans the range of climate change 
responses in terms of the mean change in temperature and precipitation, based on the 
difference between RCP8.5 projections and the corresponding historical runs. From the 
remaining 16 models, we select a subset of 10 models for downscaling.   
 
In addition to the changes in mean surface variables, a representative sub-set should 
also span the range of changes in various other aspects if climate change, including 
changes to key large scale process, such as the monsoon circulations, and changes to 
characteristics of the modes of variability, such as ENSO.  However, there are a number 
of limitations to this.  Firstly, characterising changes in a large scale process such as the 
monsoon may require us to account for a number of characteristics of changes which 
might include change in the strength of the flow, the timing of onset, peak and cessation, 
geographical changes to the location of the flow as well as changes in the precipitation 
associated with the monsoon. With a limited sub-set size we must restrict the number of 
‘dimensions‘ in which we attempt to span to key characteristics of change. Summarising 
changes in models of variability such as ENSO can again require us to address a 
number of characteristics of change (i.e. frequency, magnitude, relationship with mean 
SST changes, tele-connections), but identifying clear signal in a change in variability 
requires multiple ensemble members (Stevenson, 2012).  The varying numbers of 
ensemble members from different models in the CMIP5 archive make it difficult to 
characterise the range of changes across the full ensemble.  Many studies in the 
published literature address a subset of the ensemble for which appropriate data are 
available. 
 
The approach we take is to select the subsets based primarily on capturing the range of 
mean temperature and rainfall changes throughout the SEA region (defined in figure 
3.10 as 93E-127.5E and 11S-25N), based on both areal mean changes and sub-
regional patterns.  Secondly, we assess how well those subsets span the range of 
changes in additional key characteristics of the regional climate, where feasible, or 
where information exists in published literature.  
 

3.4.1 Capturing the range of changes in mean temperature and 
precipitation 
 
The preliminary subsets are identified by randomly selecting 500 unique sets of 10 
models, from the 16 remaining, and then defining an ‘optimal sample’ which best spans 
the range of changes. The criteria for the ‘optimal’ sample is determined using the 
fractional range coverage (FRC), which is simply the proportion of the range of future 
changes that a subset of models captures compared with the fuller ensemble (in this 
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case, all CMIP5 models which have 6-hourly data available and have not been 
eliminated on grounds of performance in Section 3.3), where ‘changes’ are the 
difference in mean temperature or precipitation in 2070-2100 relative to 1961-90 under 
RCP8.5. 
 

                               
                                             

                                       
 

 
For this calculation, all model data is first interpolated to a common 2.5 x 3.75 degree 
grid. In order to capture both the range of changes at locations within the region of 
Southeast Asia, FRC is then calculated for every grid-box, for each 3-month standard 
season, for changes in both mean surface air temperature and mean precipitation .The 
FRC values for each candidate subset are normalised by the mean and standard 
deviation of the FRC values across all 500 samples for each of the two variables. Due to 
the lesser probability of capturing the range of changes in precipitation compared with 
temperature noted above, the precipitation values were weighted x2 compared with 
those for temperature.  The ‘optimal’ sample of 10 models is simply the sample with the 
largest average Normalised FRC across the two variables and all seasons.   
 
The ‘optimal’ sample of 10 models is listed in Table 3.4 and the FRC values across the 
region for each of temperature and precipitation are shown in Figure 3.4. For the 
identified subset of 10, we achieve an average FRC of 0.9 for surface air temperature 
and 0.85 for precipitation across all grid-boxes and seasons.  
 
Further, we assess how well the subset captures the average change across the whole 
SEA region in Figure 3.5. The sample of 10 models fails only to capture the largest 
rainfall increases in DJF and otherwise provide almost fully representation of the range 
of area-average changes. 
 
 
Table 3.4: Model sub-sets recommended based on their ability to capture the range of mean 
temperature and precipitation change under RCP8.5 for the Southeast Asia region. *GFDL-ESM2G 
was later dropped due to apparent physical inconsistencies with the RCM.   

 

Selected sub-set of 10 models 

Models to be downscaled at MOHC  Models to be downscaled at MSS 

CNRM-CM5 
CSIRO-Mk3-6-0 

GFDL-CM3 
GFDL-ESM2G* 
HadGEM2-ES 

ACCESS1-3 
Bcc_csm1-1-m 

CanESM2 
CMCC-CM 

IPSL-CM5A-MR 
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Figure 3.4: Fractional range coverage of subset of 10 models listed in Table 3.4 for both mean 
temperature and mean precipitation. 
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Figure 3.5:  Summary of the seasonally-averaged area-average change in mean temperature and 
precipitation in CMIP5 projections under RCP8.5. Standard 3-month seasons are used in order to 
give equal weighting to each month of the year. Models in grey are those which either do not have 6-
hourly variables available for downscaling, or have been eliminated based on performance. Models 
in black are those included in the 10 model subset, models in blue were not eliminated but not 
selected.  Bars show the range spanned by the full ensemble (grey), models which are not eliminated 
but not selected (blue) and those which have been selected (black).  For list of model names see 
Figure 3.3. 

 

3.4.2 Capturing other characteristics of change in the 
projections sub-set. 

3.4.2.1 Changes in monsoon circulation and intensity 
 

Previous studies based on CMIP3 have indicated a weakening of the SW monsoon 
circulation but an increase of mean monsoon rainfall, which could be attributed to the 
projected intensification of the heat low over northwest India, the trough of low pressure 
over the Indo-Gangetic plains, and the land–ocean pressure gradient during the 
establishment phase of the monsoon (Kripalani et al., 2007). Jiang and Tiang (2013) 
have assessed changes in the East Asian winter (NE) monsoon, and found that as a 
whole the monsoon circulation changes little, but that a geographical response can be 
identified, with regions north of 25N experiences a weakening, and south of 25N 
strengthening.   
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We summarise the monsoon response by taking a simple difference between the 
average 850hpa wind speed and mean precipitation for the regions 5-30N,60-120E (SW 
monsoon) and 0-25N, 95-125E (NE Monsoon) (Figure 3.6). In the cases of both the SW 
and NE Monsoons, models span both increases and decreases in flow, but models 
consistently indicate increases in mean rainfall in the regions.  In the case of the NE 
Monsoon, we see a stronger relationship between the two variables, and a tendency for 
more models to indicate a strengthening of the 850hpa flow.  The subset captures the 
range of responses in the monsoon well, as defined here, including models 
demonstrating both increases and decreases in flow in both monsoon systems. 
 

 

 

Figure 3.6: Area-average changes in 850hpa flow and mean precipitation, as spanned by subset of 
10. For list of model names see Figure 3.3. Selected models in black, non-selected models in Blue, 
and eliminated or unavailable models in grey. 

 

3.4.2.2 Changes in ITCZ position and intensity 
 

Figure 3.7 summarises changes in the intensity of ITCZ rainfall and shifts in the latitude 
of the peak rainfall intensity by the end of the century under RCP8.5 in CMIP5 models.  
Projected changes during the months October-February are mainly characterised by 
changes to the intensity, with little change in the ITCZ position.  During these months, 
the projected changes in intensity span both increases and decreases, and this range is 
reflected in the 10-member subset; for example, models CanESM2 and HadGEM2-ES 
demonstrate decreased rainfall intensity in these months, while IPSL-CM5A-MR 
demonstrates increases. 
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Figure 3.7: Change in mean intensity and latitude of zonal maximum ITCZ rainfall, where 
rainfall are averaged between 90-120E. Models selected for inclusion in the 10-model subset 
are highlighted in blue and the remaining models in the ensemble are in grey. 
 
 
The projected changes in ITCZ intensity during the months March-August similarly span 
both increases and decreases, but shifts in latitude are also indicated. While the sub-set 
of 10 does not include the models projecting the largest decreases in July and August 
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(e.g. FGOALS-g2 (15 in Figure 3.7) and GFDL-ESM2M (20 in Figure 3.7)), they 
otherwise span a range a reasonable range of these increases and decreases in all 
months. Models ACCESS1-3 and CanESM2 indicate increases in intensity in May and 
June (2 and 6 in Figure 3.7) while GFDL-ESM2G (19 in Figure 3.7) characterises 
reduced intensity during these months.  Model GFDL-CM3 (18 in Figure 3.7) 
characterises a shift towards the north of the peak rainfall intensity during May-July.  
Some models also indicate shifts to the south (e.g. IPSL-CM5A-MR in July (27 in Figure 
3.7) but these are smaller changes and occur in fewer models than the northern shifts.  
The subset tends not to capture the models with the largest southern shifts in the ITCZ 
rainfall, but we note that some of the models with the largest shifts to the south are 
MIROC-ESM (30 in Figure 3.7) and MIROC-ESM-CHEM (31 in Fig 3.7) are those which 
were judged to be too unrealistic in their simulation of baseline climate to generate 
plausible projections in Section 3.3. 
 

3.4.2.3 Changes in ENSO 
 

Guilyardi et al. (2012) note in their assessment of ENSO in CMIP5 models that the 
models do not paint a consistent picture of the changed character of ENSO under 
warming scenarios. The study notes that models in the ensemble span both increases 
and decreases in ENSO variability, with results summarised in Table 3.5. 
 
Although we do not have this information about the changes in ENSO for all selected 
models, we can assess whether or not the subsets include a representative range of 
outcomes.  The 10-member subset spans the range of responses well, including models 
with significant decreases (CanESM2), increases (CNRM-CM5 and CSIRO-mk3-6-0) 
and no significant change (HadGEM2-ES) in ENSO variability.   
 
Table 3.5: ENSO variability responses of CMIP5 models under warming scenarios, Guilyardi et al, 

2012. NorESM1 indicates a decrease of the largest magnitude, but this is only just inside natural 

variability).  Models in bold face are included in our 10-member subset. 

Significant decreases No Significant change Significant Increases 

IPSL-CM5A-LR 

CanESM2 

(Nor-ESM1-M) 

Bcc-cms1-1 

GFDL-ESM2M 

HadGEM2-ES 

Inmcm4 

MIROC-ESM 

MIROC5 

MPI-ESM-LR 

MRI-CGCM3 

CNRM-CM5 

CSIRO-mk3-6-0 

 

3.4.2.4 Changes in Tropical Cyclones 
 

The work in Chapters 8 and 9 of the report will address the vulnerability of Singapore to 
potential changes in mean and extreme sea level.  The downscaled sub-set of 
projections will be used to drive surge and wave models for the region in order 
investigate both contemporary and future drivers of extreme sea levels.  
 
While Tropical cyclones (TCs) currently only rarely affect Singapore directly due to its 
proximity to the equator, they are of interest in the context of sea-level variability in the 
wider region due to the associated swell that accompanies deep low pressure systems 
in the atmosphere.  By addressing the potential changes in TC characteristics in the 
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north-west pacific, we will be better able to explore the implications of those changes for 
the wave climate in the South China Sea and approaches to the Singapore Strait.   It is 
therefore helpful to understand how well the selected subset spans any changes in TCs 
indicated by the full CMIP5 ensemble. 
 
Global model resolution is generally too coarse to reproduce TCs and their structure 
realistically, but some models are capable of producing similar, high vorticity tropical 
depressions which can be tracked and studied as an indicator or TC behaviour. 
Generally, as model resolution increases, so does the number of TCs generated by 
global models (e.g. see Camargo, 2013; Bengtsson et al. 2007), although the choice of 
convective parameterisation can also have a significant impact (Hill and Lackmann 
2009; Murakami et al. 2012).  For many lower resolution models, however, the number 
of cyclone-like systems generated is too low to relate to observations, or calculate 
meaningful relative changes.  For this reason, we can only assess the changes in TCs in 
a limited subset of the CMIP5 ensemble. 
 
The method used for tracking TCs is described in Appendix 3.4.  After eliminating those 
models which were unable to realistically reproduce key features of present day TCs in 
the North-West Pacific, 7 CMIP5 ensemble members remain; bcc-csm1-1-m, CanESM2, 
CMCC-CM, CNRM-CM5, HadGEM2-CC, HadGEM2-ES and MRI-CGCM3. All of these 
models (with the exception of HadGEM2-ES and HadGEM2-CC) produce too many TCs 
outside of the observed TC season, but overall their annual cycle is reasonable.  

 
The 7 CMIP5 models in which TC changes are assessed project a wide range of 
possible changes for the North-West pacific in both TC number and TC intensity (Figure 
3.8).  Of these 7 models, 5 are included in the selected 10-member sub-set; of these we 
capture examples of models which indicate increases in intensity and increases in 
frequency (bcc-csm1-1-m), increases in intensity and decreases in frequency 
(CanESM2, CNRM-CM5 and CMCC-CM) and , and decreases in both intensity and 
frequency (HadGEM2-ES). 
 
 

 

Figure 3.8: Percentage change in a) number of TCs and b) maximum 850hPa wind speed m/s 2064-
2095 minus 1971-2002 from CMIP5 models which produce enough TCs to allow assessment of the 
change in behaviour (See Appendix 3.4 for method). ‘BCC’=bcc-csm1-1-m, ‘CAN’=CanESM2, 
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‘CMC’=CMCC-CM, ‘CN5’=CNRM-CM5, ‘HCC’=’HadGEM2-CC, ‘HES’=HadGEM2-ES, ‘MRI’=MRI-CGCM3. 
Selected models are in black, Non-selected models in Blue. 

3.5 Summary and notes for use of the CMIP5 sub-set 

3.5.1 Summary and remaining issues 
 

The CMIP5 multi-model ensemble provides simulations from the latest generation of 
state-of-the-art global climate models.  While the ensemble cannot be considered to 
span all plausible future climate outcomes, the range projections across the ensemble 
provides an indication of the magnitudes of uncertainties that relate to the formulation of 
GCMs.  By sub-selecting from the CMIP5 models, we can capitalise on this information 
about projection uncertainty while moderating the resource requirements of downscaling 
projections to high resolution. 
 
A subset of 10 models has been identified for use in downscaling experiments for the 
generation of high-resolution climate projections for Singapore. The subset of 10 models 
demonstrates a representative coverage of the range of changes, in mean temperature 
and precipitation across and within the Southeast Asia region and also specifically when 
we address changes in a broader range of climate characteristics, such as changes in 
monsoon circulation, tropical cyclone characteristics, ENSO amplitude and the position 
and latitude of the ITCZ. 
 
The model sub-set was selected with a primary concern for maximising the range of 
plausible climate futures for the region.  Three models (MIROC-ESM and MIROC-ESM-
CHEM and inmcm4) were eliminated from our analysis, in the first two cases because 
their representation of the south-west Monsoon was insufficiently realistic to provide 
plausible projections of climate change in the region, and due to widespread 
occurrences of significant biases in the case of inmcm4. Results of evaluating the 
realism of models in a number of characteristics of their climatology and variability 
provided the basis for sub-selecting from the remaining models based on maximising the 
range of projections spanned by the sub-set whilst avoiding the models in which we 
have least confidence. 
 
A further benefit of conducting a sub-selection exercise is that it provides some initial 
understanding of the strengths and weaknesses of the GCMs from the outset.  This 
information provides very important context for: 
 

1. understanding sources of errors when evaluating the downscaled projections  
 

2. understanding the limitations of the downscaled projections  
 
The assessment and sub-selection of the GCMs for use in this project has been 
undertaken to make best use of available resource by prioritising the assessment of 
aspects of model behaviour which are key to the generation of plausible projections.  
However, as with any study that uses model simulations, a number of limitations to this 
activity should be recognised. 
 
There remain significant aspects of the climate, particularly relating to modes of 
variability (ENSO and MJO) as well as Tropical Cyclones and cold surges, which are not 
fully understood, and/or not well represented in coupled models. Studying the diagnosed 
changes in these features of the climate system provide one source of information about 
how they might change in the future.  However, the shortcomings in their representation 
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mean that it is difficult to attach confidence to those projections. The demonstrated 
shortcomings in representation of key driving processes that underpin these models, 
mean that these projections should be interpreted as highly uncertain.  Projected 
changes in the characteristics of ENSO in CMIP5 models reflect this lack of confidence 
in the fidelity of the key processes, and the subsets that we have proposed broadly 
represent this uncertainty.  We have not been able to assess changes in MJO similarly, 
and therefore note that the interpretation of any change in the MJO diagnosed from the 
subset, either before or after downscaling, should be interpreted with due consideration 
for these uncertainties. 
 
Much of our analysis is dependent on assessment by visual inspection of plotted fields of 
variables.  This assessment process can therefore be considered as essentially 
subjective. However, this allows us to look for a wide range of possible error 
characteristics, and judge their importance or magnitude on a case-by-case basis. While 
indices and metrics might provide a more objective measure of performance for very 
specific aspects of model behaviour, we are interested in too wide a range of behaviours 
and characteristics of the model behaviour to warrant the use of indices in many cases. 
Where we have drawn on existing literature to inform our sub-selection, the studies do 
not always include all of the models in the ensemble that we have considered. Where we 
have undertaken our own assessments, we have been unable to assess some aspects 
of some models due to missing parts of datasets, or uncertainty in the accuracy of data 
cataloguing. This is a result of the evolving nature of the CMIP5 archive, and a 
necessary implication of using projections from state-of-the-art models, of which 
analyses in the literature are only just emerging. 

3.5.2 Guidance on the interpretation of multi-model projections 
  
The sub-selection methodology provided in this report provides an efficient way of 
sampling the CMIP5 range of outcomes for use in dynamical or statistical downscaling. 
Given the widespread use of CMIP5-based downscaling expected via the international 
CORDEX initiative (http://wcrp-cordex.ipsl.jussieu.fr/), this work will place users in 
Singapore in a strong position to compare their diagnosed climate change impacts 
consistently with future studies carried out in many other regions. However, it is also 
important to understand the nature and limitations of the information provided.  
 
Firstly, the CMIP5 ensemble, despite its status as the latest available modelling 
technology, cannot be assumed to sample the full range of plausible outcomes 
consistent with current knowledge. This reflects its construction as an ensemble of 
opportunity, which was not explicitly designed to span some notional “space of possible 
climate models” (Knutti et al., 2010). Also, the range of outcomes is conditional upon the 
set of earth system feedbacks considered in the ensemble. For example, all the CMIP5 
models considered in this report were driven by prescribed concentrations of CO2. This 
is because regional climate model driving data were not saved from emissions-driven 
CMIP5 simulations made with earth system model configurations. This means that 
uncertainties in converting carbon emissions to atmospheric CO2 concentrations are not 
accounted for in our subset of recommended models. Thirdly, whilst we make extensive 
use of evaluation against observations to inform our recommendations, we do not 
attempt to estimate the relative credibility of different CMIP5 models by formally applying 
observational constraints based on historical performance.  
 
The sub-selection work is designed to capture the range of future projections for the 
region, but is not designed to support the estimation of relative likelihoods for any of the 
different future outcomes within or outside the range of projections defined by our subset 
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of selected models. The probabilistic projection work in Chapter 7 will, however, provide 
some relevant context to this effect, by supplying probabilistic estimates of future change 
based on a more comprehensive strategy for sampling modelling uncertainties, making 
use of additional information about uncertainty from larger ensembles of global climate 
models.  
 
The significance of systematic errors common to the set of available models should also 
be recognised. The presence of common model errors (e.g. Pennell and Reichler, 2011) 
may indicate that important processes are missing from the models, or that they share 
structural deficiencies in how some processes are represented. Such errors imply an 
unquantifiable element of uncertainty in how any set of model projections might relate to 
future climate change in the real world (e.g. Smith, 2002). In practice, common 
systematic biases may turn out to be negligible for some basic variables of interest (say 
multiyear spatial averages of surface temperature), but much more significant for others. 
This might apply, for example, to aspects of intraseasonal variability (the MJO results in 
Appendix 3.3 of this report are a good example) or extreme events difficult to capture at 
the typical spatial resolution of CMIP5 models. However, the process of thoroughly 
evaluating the driving GCMs before downscaling provides important understanding of 
weaknesses (as well as the strengths) of each model).  This will provide useful 
contextual information for the evaluation of the downscaled projections and interpretation 
of the projections, thus forming the basis for robust guidance on their appropriate use.  
Further evaluation of the models after downscaling is detailed in Chapter 4 and 
Supplementary Information Report 1, and includes analysis of climate variability and 
extremes with direct relevance for impacts assessment. 
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