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S2.1. Introduction 
 
Global General Circulation Models (GCMs) are the main tools to generate physically 
consistent projections of climate change during the 21st century. However, the horizontal 
resolution typically used in their atmospheric components (~100km) does not allow them 
to resolve certain processes important for regional climate change, such as the detailed 
influences of mountains, coastlines and other physiographic features, or to present 
information at the finer spatial and temporal scales needed for climate impact studies.  
Regional climate models, even at their current resolution (~10-50km) only solve this 
problem partially, since quite frequently climate impact studies depend on the availability 
of local or site-specific climate information. These problems are particularly relevant for 
coastal regions and islands, which are affected by small scale processes not explicitly 
resolved even by regional climate models, at their current resolutions. 
 
Empirical Statistical Downscaling (ESD) methods are widely used to generate climate 
scenarios at local scales (Wilby et al, 2004). These methods are based on statistical 
relationships which link predictands, i.e. the local scale meteorological variables, to 
predictors, the large scale variables describing the state of the atmosphere, by capturing 
the effects of local processes and physiography. These relationships are built from 
observed local and large scale atmospheric datasets which cover periods sufficiently 
long to allow a robust estimation of the required statistical parameters. The relationships 
are then applied to generate predictands for the future climate by using large scale 
predictors from GCMs. 
 
At least two main assumptions are necessary for these methods: 1) GCMs are able to 
describe the large scale state of the atmosphere for the region under investigation; 2) 
the same statistical relationship found for the calibration period in the present climate is 
also applicable to the future, changed, climate. The first assumption is common to all 
downscaling methods, since GCMs are the only tools available to generate greenhouse 
gas forced climate scenarios producing the physically, spatially and temporally 
consistent realisations of multiple atmospheric variables needed by these methods. The 
stationarity of the statistical relationship, however, is a relevant issue for empirical 
statistical methods, since they are trained with datasets which sample the natural 
variability in the present climate, and yet are expected to describe climate change trends 
and possible changes in natural variability in the future climate. An assessment of the 
stationarity of the relationship is one objective of this study. 
 
Different statistical techniques have been used for ESD, broadly classifiable (Wilby et al, 
2004) into weather typing approaches, such as the analogue method, regression 
methods and weather generators, which include a stochastic component.  Wilby et al 
(op. cit) summarise their main strengths and weaknesses. In this study, linear regression 
methods are applied to estimate statistical relationships between a set of predictands 
(observed daily data from Meteorological Service Singapore stations) and large scale 
predictors suitable to describe the atmospheric state for SE Asia. Methods are chosen 
mainly on the basis of simplicity of use and ability to test the main assumptions required 
for their applications, in particular from analysis of the residuals from the trained 
statistical relationships (Wilks, 1995).  Simplicity of use, however, does not imply a lack 
of accuracy: intercomparisons of different statistical approaches used for ESD (e.g. 
Zorita and Von Storch, 1999, Goodess et al, 2005) have shown that these methods are 
comparable in accuracy to more complex statistical approaches. 
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ESD methods have been more widely used to generate downscaled climate scenarios 
for mid latitude sites than for tropical regions; one reason may be better availability of 
long records of station variables, however, another likely factor is that local weather at 
mid latitudes is typically more strongly influenced by the large scale state of the 
atmosphere, while smaller scale processes, poorly resolved by climate models, are often 
more important the tropical and equatorial regions. Two studies are particularly relevant 
in this context:  the application of linear regression methods to daily predictands from 
West African sites (Manzanas et al, 2012), and daily rainfall downscaled by neural 
networks for a series of tropical locations (Cavazos and Hewitson, 2005). These studies 
have shown that, in tropical regions, the large scale predictors can explain less of the 
natural variability of predictands than is the case for mid latitude results, as expected for 
sites in climatic regions less constrained by large scale atmospheric flow. 
 
The aim of this study is the application of linear regression methods to estimate 
statistical relationships for daily mean temperature, minimum and maximum 
temperature, rainfall and wind for sites in Singapore, with the purpose of using them to 
downscale GCM projections from the CMIP5 project (Taylor et al, 2011). A potential 
advantage of ESD is that the methods are computationally cheap, and can potentially be 
used to downscale results from a wider range of CMIP5 scenarios than is feasible using 
regional climate model simulations, such as those carried out in the dynamical 
downscaling work within the V2 project. However, application is contingent on a careful 
assessment of the quality of the statistical relationships used. Here, these are assessed 
via analysis of statistical model diagnostics from the training period and from the 
downscaled climate scenarios, in order to understand strengths and limitations of this 
approach. RCM data is also used, mainly as a proxy of station data to test the 
assumption of a stationary relationship in the future climate (Murphy, 2000). 
 
The final outcome is an assessment of possibility of using these linear regression 
relationships to downscale CMIP5 GCMs.  
 

S2.2. Methodology 
 
In this study, linear regression methods are applied to estimate statistical relationships 
between a set of predictands (observed daily data from MSS stations, Section S2.2.1 
below) and large scale predictors, derived from variables suitable to describe the 
atmospheric state for SE Asia (Sections S2.2.1 and S2.2.2). In its simplest form, a 
predictand is expressed as the sum of a linear combination of predictors and a noise 
term. By minimising the noise term, estimators for the unknown coefficients of the linear 
combination are obtained. These estimators are applied to derive the linear coefficients 
using observed predictor and predictand data over a historical period, known as the 
calibration or training period (Section S2.2.3). Downscaled projections are then obtained 
by applying the calibrated equations to time series of predictor values derived from 
historical and future time slices of CMIP5 simulations (Section S2.2.4 below).    

S2.2.1 Predictor and predictand variables 
 
Station observations are used as predictands for the calibration period, while predictors 
can be obtained from observed or quasi-observed datasets, such as those produced by 
reanalysis projects. The statistical relationship obtained from the calibration step is then 
applied to generate historical and future downscaled time series of predictands, by using 
predictors from GCM simulations. When fed by GCM predictor variables, the linear 
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regression is expected to represent the influence of the time-varying state of simulated 
large-scale conditions on the local variables of interest in these time series, while also 
giving results consistent with the mean climatic state of the GCM.  
     
A key step in ESD is the choice of predictors. Criteria that must be fulfilled  (Benestad et 
al, 2008) include: 1) climate model representation, i.e. predictors have to be well 
simulated by GCMs, 2) description of change, i.e. predictors are expected to describe as 
fully as possible changes in the predictand under given forcing perturbations, such as 
changes in greenhouse gases and aerosols, and 3) strong relationships with the 
predictand. For example, mean sea level pressure, 2m temperature and upper air 
dynamical variables are usually assumed to be simulated well enough by GCMs to 
qualify as suitable predictors (Benestad et al, 2008). Some of these variables are also 
likely to be suitable to describe the effects of climate change on the predictands, 
although there is no guarantee that predictor-predictand relationships, derived from 
periods dominated by natural climate variability, will necessarily capture all the main 
drivers of forced climate change. 
 
Large scale variables with potential to provide strong relationships with a given 
predictand are usually identified in advance from the scientific literature, in particular 
climatological studies of processes relevant to the local scale phenomena which 
determine the observations at the relevant station. However, the region around 
Singapore has not been studied extensively, at least not to the point of identifying key 
large scale variables with strong effects on the chosen predictands at the daily time 
scale, and for all seasons of the year. Therefore, the choice of large scale variables for 
this study has been based on guidance for forecasters written by Wee Kiong Cheong 
(unpublished). This document identifies winds, relative humidity and temperature at 
levels up to 500hPa as the main large scale variables influencing local weather 
conditions in Singapore. 
 
However, while all these variables can be easily obtained from reanalysis datasets at an 
appropriate time scale, the choice of predictors is restricted by the availability of GCM 
data from the CMIP5 archive (Taylor et al, 2012), which is quite limited for daily and sub-
daily upper air variables. Nevertheless, a consistent set of upper air variables is 
available as daily averages. This set includes horizontal winds, specific and relative 
humidity, temperature and geopotential height at 1000hPa, 850hPa, 700hPa and 
500hPa. In addition, we include mean sea level pressure, 10m wind speed and 2m 
temperature as further potential predictors. Possible effects on longer time scales not 
efficiently represented by daily predictors have also been investigated, by including the 
monthly NINO3.4 index as a predictor (with a time lag of -1 month, which gives the 
largest correlation with all the predictands considered in this study). 

S2.2.2 Identifying a few key predictors 
 
In ESD, the dataset describing a potential large-scale predictor variable typically consists 
of a time series of spatial fields over the chosen domain. A commonly used strategy  is 
to first apply an Empirical Orthogonal Function (EOF) analysis (Von Storch and 
Zwiers,1999) to the dataset, in order to reduce its dimensionality and identify a few 
important modes of variability. Each EOF expresses a spatial pattern of the relevant 
mode, and the corresponding principal component (PC) represents its time-dependent 
contribution to the field of values of the relevant variable. The PCs, which depend on 
time only, are then used as predictors for the linear regressions forming the downscaling 
equations. EOFs are estimated by diagonalising the spatial covariance matrix of the 
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large-scale variable: The first few EOFs and their associated PCs are usually sufficient 
to describe most of the space and time dependence of the variable, thereby allowing a 
reduction in the complexity of the computational problem of estimating statistical 
relationships with the predictand. In addition, since most of the noise (i.e. spatiotemporal 
variability unlikely to be resolved accurately even at the resolution of reanalyses) is 
captured by higher order EOFs, only the spatially coherent components explaining the 
dominant components of variability will be retained.  
  
There are different methods to estimate EOFs. The standard approach is to derive a 
separate set of EOFs to represent spatial variability in each individual variable: For 
example, this might lead to identification of several EOFs for mean sea level pressure, 
several more for 2m temperature, several more for 700hPa relative humidity, etc. 
However, if two or more large scale variables are expected to contribute a combined 
effect on a predictand, they can be merged into one data structure in space for all the 
available time levels in the predictor dataset, and this multivariate structure can then be 
used to generate Mixed EOFs (Benestad et al, 2008). Each mixed EOFs then represents 
a joint mode of spatial variation for the set of variables considered. The mixed EOF 
approach ensures full orthogonality between different PCs (thus reducing the risk of 
overfitting when building predictor-predictand relationships). However, testing revealed 
that attempting to represent multiple large-scale variables in this way led to reductions in 
explained variance in calibration, compared with the standard approach. In this study, 
we elected to use the standard approach to derive predictor sets, with the exception that 
the mixed EOF approach was used to combine the zonal and meridional wind 
components, in order to capture the effects of wind direction.   
 

A second issue concerns whether to use only observed data (from historical time series 
of reanalyses), or to use both GCM and observed data. Using only reanalyses confers 
the practical advantage that the EOFs only have to be calculated once, and can then be 
used in downscaling applications with any chosen CMIP5 model. However, a potential 
disadvantage is that the EOFs describe only historical observed variability, and do not 
account for the possibility that GCM modes of variability may differ in pattern or 
frequency due to model error. In this case, estimates of GCM PCs, calculated by 
projecting GCM variables onto reanalysis EOFs, could be affected by the noise 
associated with GCM modes with higher order of variability.  For this reason, we 
recommend using  the Common EOF approach (Barnett, 1999, Benestad, 2001), in 
which EOFs are obtained from a concatenated dataset of large scale variables 
consisting of reanalyses of observations for the historical training period plus 
corresponding GCM data from the baseline and future portions of the relevant CMIP5 
simulation. In Section S2.5 we check the results against parallel results obtained using 
EOFs derived purely from observations. Both methods are available from the software 
package supplied (see Section S2.3).  
 
The patterns generated by the common EOF procedure will reflect variability and trends 
from both the calibration and GCM datasets. The extent to which specific EOFs project 
onto both observations and model data depends on the extent to which they share 
common patterns of variability (Barnett, 1999). We use reanalysis data from 1980-2010, 
combined with GCM data from 1980-2005 and 2070-99. While this approach gives the 
GCM data more overall weight in determining the EOFs (cf Benestad, 2001), this is 
necessary in order to ensure that sufficient years are available from each of the three  
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time slices to sample their variability and trend characteristics adequately1. Use of 
common EOFs implies that the calibration of the predictor-predictand linear regression 
equations (Section S2.2.3) will depend on the specific GCM being used for downscaling.  

S2.2.3 Calibrating the downscaling equations 
 

In this study, a procedure used to fit linear multivariate regressions has been constructed 
using the R software environment (R project), including R objects and functions from the 
R package clim.pact (Benestad et al). In particular, EOFs and PCs are calculated by 
using Singular Value Decomposition (Von Storch-Zwiers, 1999). This procedure is 
applied to the large scale variables after first normalising them by their standard 
deviation, estimated from the time series of domain averaged variables, in order to 
obtain EOFs featuring homogeneous standard deviations in non-dimensional units. 
Since EOF estimates are potentially affected by sampling problems due to the limited 
length of the time series from which they are calculated (see Section S2.2.2), the 
numerical accuracy of the EOFs is then tested by using the North’s Rule of Thumb 
(North et al, 1982, Von Storch and Zwiers, 1999).This tests EOFs by comparing 
sampling errors on their eigenvalues with differences from the eigenvalues of 
neighbouring EOFs (noting that EOFs are ordered in terms of explained variance). 
According to this rule, if an eigenvalue has a sampling error larger than the differences 
with the neighbouring eigenvalues, then the corresponding EOF is assumed to be mixed 
with the neighbouring EOFs and should be excluded. A backward-forward stepwise 
algorithm (Venables and Ripley, 1994) is then used to identify those PCs which act as 
statistically significant predictors in the linear regression, using data from the calibration 
period. This algorithm adds or removes a predictor to the statistical model, estimates a 
new linear regression model and applies the Akaike information criterion (Wilks, 1995) to 
evaluate if the statistical model is improved as a result of the change.  

 

Since we consider a large number of initial predictors, a procedure based on two 
selection steps is used. The initial screening of PCs is done by estimating correlations 
between PCs and the time series of observed values of a given predictand, discarding 
any PC with an absolute value of the correlation smaller than 0.1.  The stepwise 
algorithm is then applied, usually resulting in a number of selected predictors with a 
relatively high p value, (i.e. with a large probability that their inclusion in the regression 
has been obtained by chance). In order to avoid overfitting the statistical model, the PCs 
with p-values lower than a small threshold value (usually 0.01) are then used as 
predictors in another iteration of the stepwise algorithm, and this step is repeated until a 
final set of predictors is found, with all p-values lower than the chosen threshold and not 
modified by additional iterations of the stepwise algorithm. At the end of this two-step 
selection process, usually there are 5-10 PCs left as predictors, while the variance 
explained by the linear model is slightly smaller than the variance explained after the first 
step.  

                                                
1
 The impact of trends on the common EOFs was assessed using an offline sensitivity test. This consisted 

of adding a smooth time-independent pattern, typical of a climate change signal, to the time series of a 
reanalysis variable, and concatenating this perturbed time series onto the original time series.  EOF 
analysis on this combined dataset shows that the first EOF has a significant projection onto the idealised 
climate change signal, its standard deviation is increased by this climate change contribution and the 
corresponding PC captures the change in the perturbed period. The ability of the set of PCs to represent 
historical variability is not affected, since the mean and variance of the leading PC adjusts to account for 
the absence of a trend in the original unperturbed data, while all the other PCs and their corresponding 
EOFs remain almost unaltered.   
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In general, a linear model will be able to capture only a part of the total variance of the 
predictand.  The fraction of explained variance provides an important first order test of 
the effectiveness of the calibrated equation. A further assessment of the quality of the 
linear model fit can be done on residuals, i.e. the differences between fitted values and 
the observed values. In the ideal case, residuals are expected to have a Gaussian 
distribution with zero mean, no autocorrelation and no trend (Benestad et al, 2008). Any 
dependence of residuals on the predictors should also be absent if the linear model has 
successfully captured the dependence of the observed variable on the predictors, in 
particular residuals should have no trend and constant variance over the range of  
predictor values (Wilks, 1995). These statistics are used to assess the quality of the 
linear model fit in Section S2.5. 
 

The statistical model is also assessed by a jackknife cross-validation procedure. In this 
procedure, a block of data is removed from the calibration dataset and the two-step 
calibration procedure is applied to estimate a linear model which is then used to  predict 
the target local variable for the period which has been removed from the calibration 
dataset. Differences between predictions from the model using the full calibration period 
and predictions from the jackknife procedure are then analysed, to test the ability of the 
statistical model in reproducing the observed values and their daily variability. 
 
Since not all the predictands considered in this study are Gaussian distributed, 
alternative statistical approaches based on Generalised Linear Models (GLM, Venables 
and Ripley, 1994) have also been used. These statistical models can be used with 
predictand distributions from the exponential family, in particular for binomial and 
Gamma distributed predictands. In addition, a functional transformation (link function) is 
applied to the predictand before expressing it as a linear combination of predictors. 
Mean daily wind and daily rainfall have been modelled using these methods.  A Gamma 
distribution has been used for mean daily wind, using a log link function (Yan et al., 
2006). Rainfall has been modelled in two steps, representing the occurrence of wet days 
with a Bernoulli distribution and a logit link function, and as a Gamma distribution with a 
logarithmic link function to model rainfall intensity for wet days. As for other predictands, 
PCs from common EOF analysis have been used as predictors, applying the same 
selection criteria used for linear regression models. The calibrated statistical model is 
then validated using the jackknife approach described above. 
 

S2.2.4 Generating downscaled projections from GCM data 
 
Projections are generated by first calculating daily time series of PC values for historical 
and future portions of the relevant GCM simulation, and then applying the downscaling 
equations to derive historical and future time series of station predictands, from which 
diagnostics of interest can be calculated in the same way as from (say) regional climate 
model output.   
 
Since both the mean state and the variability in the GCM will in general contain errors, 
bias corrections are often applied to mean and variance of each GCM predictor, derived 
from the historical baseline period of the simulation (Wilby, 2004). These empirical 
corrections are then applied to predictor values derived from the future scenario portion 
of the GCM simulation, when generating downscaled future time series. Care is needed 
in applying this approach, however, since the application of separate bias corrections to 
multiple predictor variables can potentially generate physical inconsistencies in the 
description of the regional three-dimensional state of the atmosphere, particularly when 
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applied to daily time series. Some attempts to bias correct GCM boundary conditions 
involve adjustment steps to avoid such inconsistencies (Xu and Yang, 2012). In the 
present case, use of predictors derived from pre-defined EOFs reduces the risk of 
obtaining physically inconsistent results through the application of bias corrections, since 
these are applied to the PCs, and hence do not affect the spatial coherence built into the 
EOFs.  
 
In the common EOF framework, the bias correction strategy outlined above is 
implemented by adjusting the mean and standard deviation of PC time series from the 
GCM baseline period to match those of the observed PC distribution derived from the 
reanalysis period (Imbert and Benestad, 2005). For the future section of the GCM 
simulation, the most straightforward strategy is simply to apply the same corrections 
directly to the future PC time series. However, this approach would  modify any climate 
change signals reflected in the future time series of the PCs. In particular, any future 
trend in one or more PCs would be scaled up or down, dependent on the correction 
applied to the PC standard deviation. Since it is not clear that GCM errors in simulated 
future trends can be expected to scale with historical errors in simulated natural 
variability, such a scaling could be problematic, especially for variables such as 
temperature in which the forced trend is potentially large during the latter stages of the 
21st century. For this reason, the future PC time series are detrended prior to application 
of the bias corrections, by removing significant trends (p-value < 0.1) estimated by linear 
regression. These trends are then added back into the time series of the bias-corrected 
future PCs, before generating downscaled predictands.  
 
The common EOF approach is well suited to the bias correction strategy described 
above (Imbert and Benestad, 2005, Benestad et al, 2008), since the use of historical and 
future GCM data (alongside observations) to determine the EOFs should reduce the risk 
of requiring large corrections reflecting differences between observed and simulated 
patterns of variability. As noted in Section S2.2.2, however, an alternative is to use EOFs 
derived purely from reanalysis data. Although not our recommended approach, this 
method is a useful as a sensitivity test of results based on the common EOF method, 
and can also provide a convenient method of downscaling a large set of GCMs, because 
the GCM-independent EOFs only have to be estimated once. Methods  using  
reanalysis-based EOFs (e.g. Murphy, 2000) involve the calculation of projection 
coefficients (analogous to PCs) representing the time-varying projection of the EOFs 
onto daily spatial fields of the relevant variables simulated by the GCM. The same bias 
correction strategy outlined above can then be applied to the projection coefficients. In 
this case, scaling coefficients are expected to be larger than those estimated for the 
combined EOF approach, since reanalysis modes of variability are not constrained to 
match the GCM modes as in the combined EOF analysis. Potential problems due to this 
mismatch of variability modes will lead to scaling factors substantially different from 
unity. 
 

S2.3. Software  
 
R programs implementing the three regression models described in Section S2.2.3 have 
been written using object definitions and functions from the R package clim.pact. The 
basic algorithm includes pre-processing predictands and predictors from ERAInterim and 
the relevant CMIP5 GCM, estimating EOFs for a given season, calibrating the linear 
regression relationship, estimating its quality by the jackknife procedure, generating 
downscaled predictand data for baseline and future time series, and producing a series 
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of diagnostic plots assessing the quality of the linear relationship and the realism of 
baseline and future daily time series. Data from the two GCMs used in this report (see 
Section S2.4) have been saved for future use.  
 
Although the clim.pact package provided a suitable basis for this study, a number of 
changes were needed to extend its applicability. In particular 

 Use of PCs from EOF analyses of individual variables has been included also for 
downscaling of daily predictands (the original routine only allows the use of one 
set of mixed EOFs) 

 The facility to estimate projection coefficients of GCM variables onto EOFs 
derived purely from reanalyses of observations has been added, providing an 
option to generate baseline and future downscaled predictands without recourse 
to common EOFs 

 Bias correction of both GCM PCs (when derived from common EOFs)  and GCM 
projection coefficients has been implemented 

 Capability to define any desired non-standard seasons has been added 

 The function reading GCM data has been modified to support CMIP5 data, 
including both the capability to read and pre-process GCM data on the 365-day 
and 360-day calendars. 

 
Functionality to make plots based on diagnostic checks described in Section S2.2 has 
been included. Examples of these are shown in Section S2.5. 
 

S2.4. Data  
 
Station observations available for this study include precipitation (27 stations), daily 
mean temperature, daily minimum and maximum temperature (2 stations) and daily 
mean 10m wind speed and maximum daily wind speed. In Section S2.5, we investigate 
precipitation downscaling for Changi airport, s24. Mean daily wind is only available from 
one station (s24). All these data are available for 1980-2010.  
 
Large scale variables for the calibration procedure have been extracted from the 
ERAInterim dataset (Dee et al, 2011) as 6-hourly data and averaged to daily values. 
Days are defined according to the Greenwich meridian to be consistent with the 
averaging process of CMIP5 data. Station daily averages, however, are constructed 
according to Singapore local time.   
  
Two GCM models from the CMIP5 set, HadGEM2-ES and GFDL-CM3, have been used 
to generate examples of downscaled climate scenarios, using predictors derived from 
the set of large scale variables described in Section S2.2.1, with the exception of 
variables at 1000hPa; for this level, only the HadGEM2-ES horizontal winds could be 
used since the other variables contain missing data, since this level is usually lower than 
the elevation of many grid boxes. Two periods have been used: 1980-2005 from the 
historical simulation and 2070-2099 from the RCP8.5 integration. 
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S2.5. Results 

S2.5.1 EOF analysis 
 
For the purposes of estimating EOFs, two different areas have been defined,  (1N <lat 
<5N, 99E < lon < 106E for  variables likely to influence daily Singapore weather at 
relatively large scales, -1N< lat <3N, 102E<lon<106E for variables likely to exert an 
influence over somewhat smaller scales. All variables at 700hPa and 500hPa and mean 
sea level pressure are defined on the larger area, all others are defined on the smaller 
area. Optimal sizes and positions for these domains were selected following sensitivity 
studies on linear regressions for daily temperature.  

 
 
Figure S2.1: Mixed EOFs for horizontal winds at 700hPa from ERAInterim, January (1980-2010)  

 
As explained in Section S2.2.2, EOFs are calculated separately for each large scale 
variable supplying predictors, with the exception of winds. This is because the direction 
of the wind plays an important role in driving the weather in Singapore. For this reason, 
mixed EOFs describing spatial variability in horizontal winds at each given pressure level 
have been created, from the zonal and meridional components. Figure S2.1 shows the 
two components of the first mixed EOF for 700hPa, calculated from ERAInterim data for 
January, 1980-2010. PCs from these mixed EOFs have been combined with EOFs from 
all the other variables to form the set of candidate predictors for the regression models 
used in this study. 
 
Results obtained from a test calibration using EOFs based only on ERAInterim data 
showed that the NINO3.4 index and the geopotential height at all levels could be 
removed from the set of predictors, since they were never selected by the backward-
forward calibration procedure as significant predictors. 
 
Common EOFs are derived for HadGEM2-ES and GFDL-CM3 by combining variables 
from the historical (1980-2005) and future (2070-2099) periods of the relevant RCP8.5 
scenario simulation with ERAInterim variables.. 
 

S2.5.2 Daily mean temperature 
 
In order to demonstrate the methodology, linear regressions for daily mean temperature 
from the Changi airport station (s24) have been fitted for three two-month sub-seasons: 
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Dec-Jan, Apr-May and Jul-Aug, corresponding to the wet period of the NE monsoon, 
intra-monsoonal period and the SW monsoon period, using calibration data from 1981-
2010. The PCs were derived from common EOFs (see Sections S2.2.2 and S2.5.1). The 
two selection criteria used to reduce the number of potential predictors (see Section 
S2.2.3) have been set to an (absolute) predictor-predictand correlation of 0.1 and a p-
value (used to avoid overfitting) of 0.01. The efficacy of these criteria should be 
assessed on a case-by-case basis. However, we find the same values to be suitable for 
all the calibrations of temperature. Wind speed and rainfall required different settings, 
specified in Section S2.5.5 and S2.5.6. Despite these rather strict criteria, the calibration 
procedure was still able to find approximately ten significant predictors for each linear 
regression model. The variance explained is quite high for the three periods, between 
75% and 80%. Tests using the alternative EOF definition based only on observations 
(see Section S2.2.2) gave similar results. Not surprisingly, the smallest explained 
variance was obtained for the intra-monsoonal period; however, the result was still 
comparable with the other two monsoon periods, despite the lack of a consistent large 
scale flow in this period.  

 
Figure S2.2 shows results from the cross-validation for the months of April and May 
(1981-2010 calibration period), using PCs from the common EOF analysis based on 
HadGEM2-ES combined with ERAInterim. This diagnostic plot is useful to compare 
trends and multi-annual variability of the downscaled predictand with observation, and 
hence check that the downscaling relationships are producing plausible results. The 
cross-validation has been performed using the jackknife procedure of Section S2.2.3, in 
which results for each day in each two month period in each year are obtained by first 
removing the relevant two months of data from the training dataset, and then predicting 
daily values in those two months by a linear regression fitted over all the other years. 
The cross-validation result shows a very good agreement with the results from the best 
fit obtained over the entire training period. This applies even for the two months in 1998, 
despite not including an explicit predictor of El Nino phase such as the NINO3.4 index. It 
is therefore clear that PCs from the chosen large scale variables are able to explain 
multiannual variability in the station data. However, neither downscaled estimate is able 
to capture the most extreme daily temperatures, in particular for the colder days. The 
other two periods (Dec-Jan and Jul-Aug) show similar features, which could be caused 
by the small negative skewness of daily mean temperature for these periods. 
 
Figure S2.3 shows q-q plots for the normalised residuals for the intra-monsoonal period 
described above, for the linear regression model used in Figure S2.2. In this plot and 
corresponding q-q plots for Dec-Jan and Jul-Aug, there is a very good agreement of the 
distribution of the residuals with the theoretical normal distribution up to +/-2 standard 
deviations, and quite a small error with respect to observed data (standard deviation 
~0.5K). The lack of agreement at the tails of the distribution is a well known problem of 
the application of linear regression methods to daily meteorological variables (Zorita and 
Von Storch, 1999), since these methods are not designed to minimise contributions of 
effects not describable by large scale variables. However, since these errors apply to 
predictions of only a very small number of daily observations, the distribution of residuals 
passes all standard tests for normal distributions. The cross-validation results in the right 
panel are based on the differences between the predictions for the missing periods in 
the jackknife procedure and the fit using the full calibration period: these results show 
very small differences between the two estimates (mean difference very close to zero 
and standard deviation of 0.06). Similar results from the jackknife test have been 
obtained for all the other predictands.  
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Figure S2.2: Jackknife cross-calibration for downscaling of daily Tmean from the Changi airport 
station (s24), for the months of April and May of the period 1980-2010, using predictors from the 
common EOF analysis derived from ERAInterim reanalyses combined with HadGEM2-ES data. The 
two lines are the fit for the full period (blue), and for the jackknife cross-calibration (red). The points 
are the observed Tmean values from s24. 

 
Figure S2.3: q-q plot for the residuals from the linear regression model for Tmean at 
Changi airport estimated for the months of April and May, 1981-2010, normalised by 
standard deviation, left panel. The right hand panel shows residuals between the 
regressed estimates derived from the full training period (blue curve in Figure S2.2), and 
the cross-validated estimates (red curve in Figure S2.2). 

 
Estimates of autocorrelation in the time series of residuals during the calibration period 
are shown in Figure S2.4, in comparison with the correlogram obtained from the 
observed daily temperature for April-May and for December-January. Encouragingly, the 
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residuals show considerably smaller autocorrelations than the station data for the first 
few days in both periods. The residual autocorrelation approaches zero quite rapidly for 
the Dec-Jan period, while for the April-May period the residuals still show a small but 
significant autocorrelation out to 20 days. For the period not shown, Jul-Aug, residuals 
have a correlogram quite similar to the April-May period. Furthermore, correlograms 
from the cross-validation predictions (not shown) are quite similar to the correlograms 
estimated from observed data in Figure S2.4. These cross-validation results indicate that 
the linear regression model is able to reproduce quite well the correlation structure of the 
observed daily mean temperature distribution. 
 

 
Figure S2.4: Autocorrelation plots for the observed daily mean temperatures from Changi 
airport  (left panels) and for the residuals from the linear regression (right panels), for Apr-
May and Dec-Jan. Confidence intervals at 95% have been estimated by applying the 
method based on the Fischer’s z transformation (von Storch, book) 

 
Nevertheless, these results are not fully consistent with the prior methodological 
hypothesis of zero autocorrelation, and Gaussian distributed residuals. It is important to 
test these assumptions, since they could be used to justify the introduction of a white 
noise, additive term to the linear regression (Von Storch, 1999), aimed at describing the 
small scale noise stochastically in order to improve the statistical downscaling model. 
Tests on the effects of the inclusion of a linear noise term are shown in Figure S2.5, for 
the period Apr-May and Jul-Aug. The noise has been generated using random sampling 
from a Gaussian distribution with zero mean, the standard deviation of the residuals from 
the linear model from the full calibration period, and assuming no autocorrelation. The 
result shows a small improvement at the tails for the Apr-May distribution and a mixed 
outcome for the Jul-Aug period, since small improvements at the lower end are 
counterbalanced by spurious values introduced at the upper tail; therefore, for this 
predictand, the addition of a linear noise term to the linear regression model does not 
necessarily improve the overall credibility of the downscaled estimates. 
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Figure S2.5: Histogram of mean daily temperature for Changi airport compared with the 
distribution from the linear regression fit (blue curve), and from the linear model with the 
addition of white noise distributed as the residuals (red curve). The statistical models have 
been estimated for the period 1980-2010, for April-May (left panel) and June-July (right 
panel), using PCs from the HadGEM2-ES/ERAInterim common EOF analysis. 

  
Since Figure S2.4 indicates the presence of small but significant autocorrelation out to 
20 days in the residuals, it is useful to assess whether the large scale signal associated 
with the PCs used in the linear regression has been completely accounted for in the 
regression equations. A comparison of correlations of the selected PCs with both the 
predictand and the residuals (Figure S2.6, filled circles in top and bottom panels 
respectively) shows that these PCs are almost completely uncorrelated with the 
residuals. The same applies to additional PCs not selected by the backward-forward 
stepwise algorithm, despite showing relatively high predictor-predictand correlations. 
This outcome indicates that the long range persistence of residual autocorrelations seen 
in Figure S2.4 cannot be ascribed to a failure to capture the influence of large-scale 
variables considered in the EOF analysis.  
 
In summary, the above analyses on the residuals  for Changi airport mean temperature 
suggested that the calibration of these linear models is acceptable. However, this 
assessment is not sufficient, in isolation, to guarantee that these statistical models can 
be applied to downscale GCM projections. 
 
Downscaled future projections are generated by applying the fitted linear regression to 
the PCs describing the future HadGEM2-ES climate scenario obtained from the common 
EOF approach, after applying the bias correction procedure described in Section S2.2.4. 
Figure S2.7 shows the results for Changi airport, obtained from the April-May period 
discussed above.  Downscaled temperatures are in the same range of the GCM average 
daily temperatures for the Singapore grid box (also shown in Figure S2.7), with higher 
variability at the lower end of the distribution. This result is consistent with the time series 
of downscaled HadGEM2-ES baseline daily temperatures (not shown), which also 
features an increased variability at lower temperatures and temperature in the same 
range. The leading bias-corrected PCs selected for this linear model are shown in Figure 
S2.8. Scaling factors representing the fractional change to the standard deviation of the 
PCs introduced via bias correction are reported in the Figure. These are reasonably 
small, in particular for the leading PCs; similar results are obtained from bias corrected 
projection coefficients obtained from the linear regression model based on PCs derived 
only from ERAInterim data. The leading PC (top left panel) corresponds to the leading 
EOF of the 2m temperature variable: This PC determines the main climate change 
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between the 2070-99 and baseline periods, including also the trend within the 2070-
2099 period.  
 

 
 
Figure S2.6: Correlation of PCs forming potential predictors of Changi airport daily mean 
temperature, top panel, and with residuals from values predicted by the calibrated linear 
regression, bottom panel.  PCs from different variables are shown with different colours, 
the full circles indicating the PCs which were selected for use in the linear regression 
model. 

 
The climatological distributions of baseline and future downscaled temperature derived 
from HadGEM2-ES predictor data are shown in Figure S2.9. The distribution for the 
historical period is centred on the corresponding distribution downscaled from 
ERAInterim predictor data, reflecting satisfactory performance of the bias correction 
strategy applied to the PC time series from the GCM. This Figure also shows the 
downscaled future climate distribution, derived from the detrended downscaled variable, 
in order to compare the historical and future realisations of local natural variability. In this 
case, the future results show an increase in variability, consistent with an increase in the 
variability of daily temperature in HadGEM2-ES for the grid box containing Singapore 
(not shown). 
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Figure S2.7: Downscaled daily mean temperature for the HadGEM2-ES RCP8.5 projection 
(red line), for April and May in the period 2070-2099, using PCs from the common EOF 
analysis. Daily mean temperatures extracted from the HadGEM2-ES Singapore grid box 
(black line) are also shown. 

 
 
Downscaled results for Dec-Jan and Jul-Aug historical temperature distributions (not 
shown) show mean values with a small cool bias, and a small reduction in variability, in 
particular at the lower end of the distribution, when distributions derived from HadGEM2-
ES predictors are compared with those derived from ERAInterim predictors. However, 
downscaled temperatures derived from HadGEM2-ES have a more realistic spread than 
values taken directly from the grid box containing Singapore, increasing their potential 
utility for impact studies. Similar results are obtained from an alternative linear 
regression model based on the EOFs derived purely from ERAInterim data For the 
GFDL-CM3 model, the climatological average of daily near-surface temperature for the 
Singapore grid box is ~2K smaller than the observed and downscaled temperature from 
the GFDL-CM3 historical period, and also shows higher variability. Therefore, the 
downscaling procedure leads to a derived distribution showing a better fit to 
observations than the raw GCM grid box data. This result is obtained both from the 
linear regression based on PCs from the common EOF analysis, and also from 
projection coefficients obtained using EOFs derived purely from ERAInterim data.  The 
warm shift found in the baseline period between the downscaled temperatures and the 
raw GFDL-CM3 values is also found in the future climate results.  
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Figure S2.8: Principal components from the common EOF analysis based on ERAInterim 
and HadGEM2-ES data, selected for the linear regression for Changi airport mean daily 
temperature, for the period Apr-May (1980-2010). The results show future PC time series 
processed by detrending, bias correction and reinstatement of trends as described in 
Section S2.2.4. The black curves are the principal components for the calibration period 
(ERA-Interim), the blue curve for the HadGEM2-ES historical period and the red curve for 
the HadGEM2-ES future period 2070-99, under RCP8.5 scenario forcing. tas, 2m 
temperature; hur500, relative humidity at 500hPa, ua1000va1000 is the PCs for the mixed 
horizontal winds at 1000hPa. Three PCs from the 2m temperature variable, two PCs from 
500hPa relative humidity and one from the mixed EOF of 1000hPa wind components were 
selected in the linear regression procedure.  

 
Figure S2.9: Distributions of downscaled daily mean temperatures for Changi airport using 
calibrated downscaling relationships applied to PC predictor time series from ERAInterim 
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for the calibration period (black), the HadGEM2-ES historical period (blue) and the 
HadGEM2-ES future period (2070-99), in response to the RCP8.5 emissions scenario.  

S2.5.3 Daily Maximum Temperature 
 
Daily maximum temperatures for the station under investigation (Changi airport, s24) 
have highly negative skewed distributions (skewness ~ -(0.8-1.3)), with corresponding 
standard deviations ranging between 1.3C and 1.8C. Nevertheless, an attempt to fit a 
linear regression model to this predictand was made. Since monthly distributions are 
quite similar within the bimonthly periods used in Section S2.5.2, the same two month 
periods are used here.  
 
The calibration plot in Figure S2.10, obtained from a linear regression based on a 
common EOF analysis for HadGEM2-ES and ERAInterim, shows a fit which does not 
capture extreme values, in particular for the lowest temperatures. The model therefore 
fails to capture the skewness of Tmax for this period. However, the linear regression 
model still explains 58% of the variance. Similar values have been obtained for the other 
two periods (55% for Apr-May and 65% for December-July). 

 
Figure S2.10: Calibration, for July-August 1980-2010, of daily maximum temperatures 
(Tmax) for Changi airport, using PC predictor variables based on common EOFs obtained 
from HadGEM2-ES and ERAInterim data. Fitted Tmax (blue curve), fit from the cross-
calibration procedure (red curve)  and observed values (open circles). 

 
The analysis of residuals in Figure S2.11 shows a rather good agreement with a 
Gaussian distribution and a very low residual autocorrelation, in particular when 
compared with the autocorrelation in the observations. This is despite the failure of the 
downscaling to capture the low Tmax extremes, which occur on only a small number of 
days. From this stage of the assessment, the linear regression model appears fit for 
purpose. 
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Figure S2.11: q-q plot of Tmax residuals normalised by standard deviation (left panel), 
autocorrelation of the observed Tmax (middle  panel) and autocorrelation  of the residuals 
from the linear regression of Tmax, for July-August, 1980-2010, corresponding to the 
downscaling for Changi airport shown in Figure S2.10. 

 

 
Figure S2.12: Downscaled Tmax from the HadGEM2-ES RCP8.5 projection (red line) and 
Tmax taken from the same HadGEM2-ES integration for the grid-box including Singapore, 
Jul-Aug, 2070-2099. 

 
The application of the linear fit to downscale the HadGEM2-ES RCP8.5 simulation is 
shown in Figure S2.12, using bias corrected PCs from the common EOF analysis. The 
downscaled Tmax projection shows a shift to higher absolute temperatures with respect 
to raw HadGEM2-ES values extracted from the grid box including Singapore. The shift of 
future downscaled temperatures to higher values with respect to its driving model is 
comparable to a similar shift obtained by downscaling HadGEM2-ES for the present 
climate period, which produces results comparable with station observations. This 
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indicates that the downscaling is successfully addressing biases in the HadGEM2-ES 
Tmax data, while the projected future changes are similar between the downscaled 
values and those taken directly from the GCM output. The daily variability of the 
downscaled Tmax  is slightly larger than the HadGEM2-ES grid-box Tmax for both future 
and baseline periods (not shown); however, given the limitations in explained variance 
and the negative skewness of the distribution of observed values, daily variability in the 
downscaled results could still be underestimated. Similar results were obtained from an 
alternative linear regression using EOFs derived only from ERAInterim data. 
The possibility of including an additive noise term to the linear model for Tmax should be 
considered with caution. Tests showed mixed results: spurious extreme high values of 
Tmax were created, together with some improvement at the lower tail of the distribution, 
when applied to the HadGEM2-ES historical period. Results for Tmax downscaled from 
GFDL-CM3 are consistent with these findings. 
 

S2.5.4 Daily Minimum Temperature 
 
Distributions of daily minimum temperature (Tmin) for the observed dataset (s24) show  
negative skewness, but the extent is smaller than found for daily average temperature 
(Tmean). For this reason, the use of a linear regression model is even more justifiable 
than for Tmean. The method was fitted to the same bimonthly periods used for Tmean 
and Tmax, since distributions of Tmin are also quite similar for the individual months 
within these periods. 

 
Figure 13: Calibration for Tmin at Changi airport, for Dec-Jan 1980-2010. Fitted Tmin (blue 
curve), fit from the cross-calibration procedure (red curve)  and observed values (open 
circles). 

 
The calibration for the period July-August (1980-2010), using HadGEM2-ES/ERAInterim 
common EOF analysis, is reported in Figure S2.13. Fitted values have a spread which 
does not cover the full range of values from observations, and explained variances are 
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quite low (between 40% and 50% for the period considered in this study). Cross-
validation results are similar to those obtained from fitting the entire training period, while 
the correlogram of the cross-validation predictions shows slightly larger autocorrelations 
for the first few days with respect to the correlogram of the station observations.  
 

Figure S2.14 shows results from the analysis of the residuals for the Dec-Jan period for 
the linear fit: the q-q plot indicates very good agreement with a Gaussian distribution (up 
to 3 standard deviations) and the correlograms show very small values of autocorrelation 
left in the residuals.  
  
Downscaled minimum temperatures from the baseline and future HadGEM2-ES 
integration, derived from bias corrected common EOFs (not shown), are lower than the 
corresponding HadGEM2-ES values for the Singapore grid box.  Downscaled Tmin 
shows daily variability comparable with the variability of the Tmin values for the 
Singapore grid-box from HadGEM2-ES, possibly reflecting the small explained variance 
explained by this linear model. The autocorrelation of the residuals drops to zero after 
few days, suggesting that the linear regression model has effectively removed all 
dependence on the larger scales seen in the correlogram of the observations. This is a 
rather surprising result, given its small explained variance (41% for this period). 
Therefore, results of the analysis of the residuals in figure S2.14 support the conditions 
for introducing an additive, white noise term to the linear regression fit. 

 
Figure S2.14:  q-q plot (left panel), autocorrelation of the observed Tmin (middle panel) and 
autocorrelation of the residuals from the linear regression of Tmin, Dec-Jan, 1980-2010 

 
Figure S2.15: Histogram of observed daily  Tmin compared with the distribution obtained 
from the linear fit (blue) and the distribution of the model which includes the linear fit and 
a white noise term (red). Left panel, Dec-Jan, 1980-2010; right panel, Apr-May, 1980-2010, 
from the linear fit using the HadGEM2-ES/ERAInterim common EOF analysis. 
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The results of adding white noise can be seen from Figure S2.15, showing bimonthly 
distributions of Tmin compared with the linear fit and with the model which includes an 
additive Gaussian noise term, with mean equal to zero and the variance of the 
distribution of the residuals from the linear model. The large scale constraint on this 
predictand, as captured by the linear regression model, is rather small (blue curves). The 
agreement of the model including additive noise (red curves) with the observed station 
distribution is much improved. These findings therefore suggest that most of the daily 
Tmin variability is caused by small scale processes which cannot be described by the 
PCs used in the linear regression, since the explained variance due to the large scale 
predictors is 41% and the white noise term, constructed from the almost uncorrelated 
residuals, is able to reproduce the shape of the distribution of the observed values. 
These findings are reproduced by the linear model based on the alternative EOF 
analysis using ERAInterim alone. Similar results are also obtained by downscaling the 
GFDL-CM3 model. 
 
The linear model with additive noise, therefore, can be used to downscale future 
scenarios as well. However, in this case, the assumption that the weight of the additive 
noise will be the same in the future climate is  worth studying as part of a recommended 
assessment of the issue of the stationarity of the statistical relationship, using regional 
climate model data (see Section S2.6). 
  

S2.5.5. Average Daily Wind Speed 
  
Daily average 10m wind speed, only available for  the Changi airport station (s24), was 
modelled using the GLM approach, since, for most of the months, the distributions of 
observed values are strongly positively skewed (not shown). An obvious choice for 
modelling these distributions is the Gamma distribution (Yan et al, 2006); in particular, 
the mean parameter of the Gamma distribution is written as the exponential of a linear 
combination of predictors.  
 
In this case, the calibration dataset consists of one month blocks for the period 1981-
2010 since monthly distributions of daily mean 10m wind speed are quite different. PCs 
were taken from a common EOF analysis using HadGEM2-ES and ERAInterim 
variables. We consider the same set of candidate variables used to downscale station 
temperatures, except for the addition of the daily average 10m wind speed (justified by 
previous work, e.g. Manzanas et al, 2012). We also withheld  near-surface and upper 
level temperature from the set of potential predictors, since including these caused non-
physical behaviour of the fitted regression models in the downscaling of the future, 
changed, climate; in particular, the inclusion of temperature PCs with a strong climate 
change signal produced very large and unrealistic future 10m wind speeds, amplified by 
the exponential dependence from predictors. This illustrates the importance of checking 
whether relationships trained on historical climate variability produce credible 
realisations of future climate, in cases where the predictor variables project significantly 
onto both natural variability and the future response to changes in greenhouse gases.  
The correlation threshold for identification of potential PC predictors was set to 0.1 (as 
for temperature variables), however the p-value threshold for significance in calibration 
was increased to 0.05. Despite this increase, the smaller set of variables available for 
calibration and the smaller sample result in a smaller number of significant predictors 
being selected at the end of the stepwise procedure (usually not more than six PCs). 
Figure S2.16 shows results obtained from the calibration for the month of July. The fitted 
model is able to capture most of the larger values from the observational dataset, 



 

                             
 

Singapore 2
nd

 National Climate Change Study – Phase 1 

Supplementary Information – Report 2 – Assessment of Empirical Statistical Downscaling 

23 

although there is a systematic overestimation of the smallest values. There is also a 
good match with the ERAInterim series of daily 10m wind speed, which shows smaller 
daily variability with respect to fitted model and observations. The explained variance is 
also relatively high (58% for the month of July, in general between 55% and 60%). 
  
The results of the jackknife cross-validation are similar to those reported for 
temperatures, i.e. the standard deviation of differences between the downscaled time 
series based on full-period and cross-validated regressions is smaller than the standard 
deviation of the residuals with respect to the predictand data, and the correlogram of 
jackknife time series is very similar to the correlogram of the observed values. These 
results indicate that overfitting has been successfully avoided in the calibration 
procedure and the statistical model is able to reproduce the daily variability of the 
observed 10m wind speed. 
 
Figure S2.17 shows q-q plots for two months, July and April. The match with a Gaussian 
distribution is quite good up to two standard deviations in both cases, similar to the 
results obtained for temperatures. However, in April the low and high tails are not well 
reproduced.In this respect, the statistical model can be improved by including a random 
noise component. In this case, since the model is not linear, the procedure is more 
complex than for temperature: the predictable part is used together with a dispersion 
parameter, estimated from the residuals, to derive the two parameters of the gamma 
distribution, from which random samples including both predictable and random 
components can be generated. The resulting distributions (not shown) are in good 
agreement with observed distributions, in particular lower and upper tails are quite well 
reproduced. 

 
Figure S2.16: Calibration for 10m wind speed at Changi airport during July, 1981-2009, 
from the statistical model fit using PCs from the HadGEM2-ES/ERAInterim common EOF 
analysis. Fitted daily 10m wind speed (blue curve), fit from the cross-calibration procedure 
(red curve) , ERAInterim 10m wind speed for the Singapore grid box (skyblue curves) and 
observed values for Changi airport (open dots). 
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Figure S2.17: q-q plots for the residuals (per unit standard deviation) from the calibration 
for 10m wind speed at Changi airport for 1981-2009, using HadGEM2-ES/ERAInterim 
common EOFs: July (left), April (right). 
 

 
Figure S2.18: Autocorrelation for the observed daily 10m wind at Changi airport (left 
panel), and from the residuals of the downscaling calibration, from the analysis for April, 
1981-2009. 
 

 
Figure S2.19: As Figure S2.18, for January, 1981-2009. 
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Figure S2.20: Downscaled HadGEM2-ES projections of average daily 10m wind speed at 
Changi airport for  April, present climate (1980-2005), top panel, and future climate (2070-
2099, RCP8.5), bottom panel, from the statistical model based on the HadGEM2-
ES/ERAInterim common EOF analysis (red curves). The black curves are  average daily 
10m wind speed values for the Singapore grid box taken directly from HadGEM2-ES. 



 

                             
 

Singapore 2
nd

 National Climate Change Study – Phase 1 

Supplementary Information – Report 2 – Assessment of Empirical Statistical Downscaling 

26 

 

Figure S2.18 shows the correlograms for observations and residuals for April and 
supports the hypothesis that the statistical model has successfully fitted (and accounted 
for) the large scale influence on wind variability at Changi airport. However, the 
corresponding analysis for January (Figure S2.19) indicates a larger long range 
persistence of residual autocorrelations than the observed dataset.  
 
Downscaled scenarios from bias corrected PCs from the HadGEM2-ES/ERAInterim 
common EOF analysis are reported in Figure S2.20, showing downscaled wind speed 
from the HadGEM2-ES present period and future climate (RCP8.5). The downscaled 
results show greater variability than the HadGEM2-ES values, and are closer to the 
distribution of station observations in this respect. Similar results have been obtained for 
January and July, and from a parallel analysis using bias corrected projection 
coefficients obtained from EOFs based on ERAInterim alone. 
.   
Linear statistical models generated for GFDL-CM3 show a different behaviour, with GCM 
model data usually showing larger mean values than the downscaled scenario, but with 
a consistent representation of daily variability in the GCM grid-box values and the 
downscaled wind speed. Since wind speeds are particularly strongly influenced by local 
effects, comparison against GCM values may not be a particularly appropriate test of the 
plausibility of the downscaled scenarios. Therefore, additional tests, possibly using RCM 
wind speed, could be useful. Indeed, this caveat applies, to some extent, to all the future 
scenario results given in this section. Comparisons against raw GCM output for the 
Singapore grid box are provided as a basic sanity check of the downscaled results, 
however it is precisely the purpose of the downscaling to add value to the GCM output. 
Therefore, the discovery of differences in the characteristics of the downscaled and non-
downscaled results is not necessarily a cause for concern, provided the differences can 
be understood as expected consequences of the benefits conferred by downscaling, for 
example in achieving a better representation of the natural variability found in the station 
observations. 
 

S2.5.6. Rainfall 
 
As outlined in Section S2.2.3, a two step procedure has been used to model 
precipitation. Occurrence of wet days (defined with a threshold of 1mm/day) has been 
modelled by a Bernoulli distribution (i.e. the binomial distribution with n=1), with the logit 
of the probability expressed as a linear combination of predictors. Rainfall intensity has 
been modelled by a Gamma distribution, expressing the logarithm of rainfall intensity as 
a linear combination of the PC predictors. This statistical procedure has previously been 
used in other statistical downscaling studies (e.g. Sapiano, 2004, Fealy and Sweeney, 
2007).  Results presented in this section were obtained from a study focusing explicitly 
on model calibration, wherein PCs were obtained from EOF analysis on ERAInterim data 
only, using predictors derived from the same set of variables used for temperature (u, v 
and relative humidity up to 500hPa, mean sea level pressure and 2mT). Since a very 
small number of predictors show correlations with rainfall intensity and occurrence larger 
than 0.1, a threshold-based criterion for identification of potential predictors was not 
used. However, the total number of potential predictors was limited by considering only 
the five  PCs with the largest explained variance. The threshold p-value used in the step 
wise algorithm was increased to 0.1, to ensure selection of a number of predictors 
consistent with the results obtained for the other predictands. Explained variances were 
lower than 50%, but analysis of correlations of PCs with residuals gave few predictors 
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with an absolute value of correlation larger than 0.05 for both rainfall intensity and 
occurrence (not shown). This result indicates that large scale signal has been efficiently 
captured by the two linear regression models. 
, 

 
Figure S2.21: Histogram of observed daily rainfall at Changi airport for January (left panel), 
and of residuals from the downscaling calibration, based on common EOFs from 
HadGEM2-ES and ERAInterim (right panel) 

 
Figure S2.21 shows the rainfall distribution for the month of January: the distribution is 
very wide and has a very long tail. This month  falls in the wettest phase of the NE 
monsoon, however, even in this monsoonal month rainfall still occurs predominantly as a 
result of small scale convective activity, implying that strong links to large-scale predictor 
variables may be hard to find. During the inter-monsoonal periods the large scale forcing 
will be even weaker.  
 
The calibration relationship for rainfall intensity produced fitted values in the middle 
range of the distribution of observed intensities (not shown), basically failing to 
reproduce any event with intensity smaller than 10mm/day. This result is consistent with 
the histogram of the residuals in Figure S2.21, which shows, not surprisingly, a negative 
tail of large underestimates resulting from a failure to reproduce the most extreme 
observed intensities, but also a rather large number of days with intensities 
overestimated by up to 50mm/day. This outcome is summarised by the rather small 
correlation between observed and fitted intensities, with a value of 0.5. This is consistent 
with the strong influence of local convective events referred to above. In this context, it is 
worth noting that the lack of a dominant large scale driver for the heavier rainfall events 
is likely to limit the predictability of any downscaling technique in a historical evaluation 
based on time series correlations. This is supported by the very small (absolute) values 
of the correlations between residuals and predictors and by the lack of significant 
autocorrelations in the residuals at any time lag.  While the limitations in explained 
variance may not, in isolation, be sufficient to assess the methodology as unsuitable, the 
utility of the statistical model is further compromised by the fact that it cannot reproduce 
the mode of the observed distribution (Figure S2.21, left panel). 
 
In addition, it turns out that the statistical model for intensity is also rather unstable. 
Specifically, for some periods the cross-calibration procedure could not be completed 
because the procedure to estimate the parameters did not converge. These numerical 
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convergence problems may indicate that the statistical procedure for representing 
intensity, while based on a state of the art approach from current literature, is not 
suitable to model the characteristics of daily rainfall in Singapore. It is unlikely that any 
other statistical downscaling approach available from the current literature would 
improve the description of the relationship with large scale variables, which needs to be 
explicitly described for applications in climate change studies. Therefore a new method, 
specifically designed for Singapore, would likely be required to downscale daily rainfall 
intensities. 
 

S2.6. Stationarity of statistical relationships 
  
A fundamental assumption in statistical downscaling is that relationships calibrated from 
the present climate can also be applied to the future, changed, climate. This assumption 
cannot be tested directly, as it would require the availability of observed data for the 
future climate. However, an indirect test can be performed by using RCM model output 
as a proxy of station data and the driving GCM as a source of large scale predictors 
(Murphy, 2000). This test assumes that RCM surface variables for a grid box can be 
assumed as representative of corresponding station data. An analysis of results 
obtained from this approach is discussed in this section. 
 
The stationarity test is performed using HadGEM3-RA integrations at 12km resolution, 
driven by the HadGEM2-ES integration for the present climate and the RCP8.5 future 
concentration pathway. In particular, this analysis focuses on comparison of future 
downscaled variables predicted using relationships calibrated from the simulated present 
climate, against either RCM variables taken directly from the future climate integrations, 
or from alternative downscaled results based on relationships calibrated from the future 
data. This is sufficient to test the robustness to potential non-stationarities of the final 
results from the multivariate regression relationships. However, we do not attempt a 
more detailed assessment of the effects of climate change on individual predictor-
predictand relationships contributing to the multivariate regression (Murphy, 2000). Such 
a study would be challenging for the methodology used in this work, since the iterative 
procedure used for calibration is liable to return somewhat different predictor sets when 
calibrated on present and future climate conditions. In particular, the choice is potentially 
sensitive to the presence of strong correlations between some of the PCs considered as 
potential predictors, which can lead to exclusion of a PC from the final calibrated 
statistical model simply because its effects might be  captured by the correlated PCs, 
rather than because the predictor itself is not significant.  
 
For this study, linear regression relationships between HadGEM2-ES predictors and 
HadGEM3-RA surface variables have been calibrated by using an EOF analysis from 
the HadGEM2-ES present climate integration (1980-2005). The analysis has been 
carried out using the RCM output (driven by the same HadGEM2-ES simulation) for the 
grid box which includes the Changi airport station (s24) as a proxy of station 
observations. From these relationships, downscaled scenarios for the period 2070-2099 
from the HadGEM2-ES RCP8.5 integration have been generated, from predictors 
obtained by projecting HadGEM2-ES large scale variables from the future climate 
integration onto the present climate HadGEM2-ES EOFs. These downscaled variables 
have been compared with: 1) simulated RCM variables for 2070-99; 2) alternative 
statistically downscaled values derived by recalibrating the linear regression 
relationships using RCM surface variables, and EOFs and PC predictor values from 
HadGEM2-ES, all calculated from 2070-99 period of the simulations, rather than from 
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1980-2005. These statistically downscaled values represent the component of the 
predictand which is expected to be reproduced by predictions from linear regression 
models, since predictions are only based on the linear regression term of the statistical 
model and do take into account the contribution of residuals. However, a comparison of 
residuals from present and future climate calibrations is also relevant this study, as a 
simple test for the introduction of additive white noise terms in statistical models. It is 
worth noting that this test is only based on GCM large scale variables, therefore there is 
no need to include bias correction of GCM predictors.  
   
An analysis of future daily temperature for the Apr-May period has shown a good 
agreement between predicted (i.e. statistically downscaled) variables and RCM grid box 
values. The explained variance is similar to the observed historical results obtained 
using station data and ERAInterim predictors. Differences between predicted values and 
future RCM grid box values during 2070-99 do not show any significant trend, indicating 
that the statistical model trained on present climate data is able to reproduce the climate 
change trend. However, there is a non negligible mean bias between predictions and 
RCM future values (0.6K). The comparison of daily variability is also good, as can be 
seen from the left panel in Figure S2.22. Linear trends have been removed from all 
datasets used for this Figure. The differences are distributed normally and their standard 
deviation (0.7K) is comparable to the standard deviation between fitted values and RCM 
values from the calibration period (0.6K). This result, which is common to all the other 
predictands in this study, supports the use of additive white noise terms (Von Storch, 
1999), since they require a constant variance of residuals from present and future 
climate. The right panel in Figure S2.22 shows a q-q plot which compares two sets of 
predicted values, derived from calibrations based on historical and future data 
respectively: The differences are normally distributed and the standard deviation is 
rather small compared with the direct validation against RCM data (0.25K cf 0.7K in the 
left panel).  

 
Figure S2.22: q-q plots of detrended daily temperature predicted from the linear regression 
model based on HadGEM2-ES and HadGEM3-RA present climate data with 1) detrended 
future RCM daily temperature from the HadGEM3-RA temperature for the Changi airport 
grid box (left panel) and 2) with detrended fitted values from the future HadGEM2-ES 
calibration period (right panel). 
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Similar results have been obtained from the other two periods (Dec-Jan and Jun-Jul), 
although the mean future bias is smaller in both periods (-0.1 for Dec-Jan and 0.2 for 
Apr-May).  
 
Corresponding analysis for daily maximum temperature also does not show any trend in 
differences between predicted values and RCM variables for the future period. However, 
mean biases can be quite large (1.5K for Jun-Jul and Apr-May, 0.5K for Dec-Jan).  The 
spread of differences between predicted values and future RCM values is also quite 
large (1.3-1.5K) for all sub-seasons. The RCM Tmax distribution is more variable than 
the station data distribution and the variance explained by fitting the statistical model to 
RCM values for the present climate is smaller than that obtained from calibration using 
observed station data. These results indicate that RCM Tmax may not be a good proxy 
for observed Tmax; therefore, it is difficult to draw any inference regarding the 
stationarity of the Tmax relationship from these results. 
 
For daily minimum temperature, results are similar to those obtained from daily average 
temperature, both for mean bias and daily variability. The explained variances for both 
present and future climate statistical models, in application to RCM data, are larger than 
the observed values obtained from the station record. Analysis of the differences 
between predictions from relationships calibrated from present climate data and RCM 
grid box values for the future climate shows a significant trend (p-value 0.01), but with 
very small values (0.1K/decade) compared with the rates of change simulated by the 
RCM itself.  
 
Statistical predictions of RCM daily mean wind speed for the Changi airport grid box give 
similar results: Calibration based on the historical GCM and RCM time series give. 
explained variance similar to observed downscaling relationships using station data; 
Future predictions using the historically trained relationships compare well with both the 
future RCM values, and (to an even greater extent) with fitted values from a calibration 
based on future climate model data. The mean bias in the future projections is also quite 
small (0.1-0.2 m/s). The comparison between predictions based on historical 
relationships, and fitted values from the future climate calibration, is shown in Figure 
S2.23 (Jul, 2070-2099). This demonstrates the good agreement between predicted 
(blue) and calibrated (red) values referred to above, although some of the largest values 
in the future-calibrated time series are overestimated by the predictions derived from 
historical relationships. 
 
Figure S2.23 also shows  the HadGEM2-ES time series of wind speed for the Singapore 
grid-box. Here, we show raw GCM rather than raw RCM wind speeds, in order to 
illustrate the caveats involved with using future GCM values to check the downscaling 
results (cf Figures S2.7 and s2.12, for example). The two downscaled curves are shifted 
to higher values with respect to the GCM time series, but not with respect to the RCM 
time series for Changi airport (not shown). Therefore, the bias between the statistically 
downscaled and GCM time series does not, in this case. indicate a shortcoming in the 
downscaling methodology. Rather, this difference occurs because the RCM grid box 
wind speeds (not shown) give a smaller frequency of low wind speeds than the 
corresponding GCM data, which effectively represent values spatially averaged over a 
much larger area. 
 
The wind speed assessment also supports the use of a set of predictors which excludes 
temperature at all levels (see earlier discussion in Section S2.5.5), since the remaining 
predictors can still produce realistic estimates of downscaled wind speed for the future 
climate. Recalling that successful downscaling of wind speed requires a random 
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component derived from the calibration residuals (Section S2.5.5), the stationarity of the 
random component was also assessed: dispersion parameters from the present and 
future climate calibrations were found to be in good agreement. Furthermore, the 
statistical model including a random component, estimated from RCM present climate 
output, gives distributions of future 10m daily wind speed which agree quite well with the 
distribution of future 10m wind speed simulated by the RCM. 

 
Figure S2.23: Comparison between downscaled time series of daily average 10m wind 
speed predicted from the statistical model trained on the HadGEM2-ES/HadGEM3-RA 
present climate simulations (red curve), fitted values from the statistical model calibrated 
using future HadGEM2-ES/HadGEM3-RA data (blue curve), and average 10m wind speed 
for the Singapore grid-box taken from the HadGEM2-ES RCP8.5 integration, for April 
(2070-2099). 

 

S2.7. Summary 
 
An assessment of the applicability of Empirical Statistical Downscaling, based on linear 
regression models calibrated using historical data from 1980-2010 as a training period, 
has been presented in this report. Five observed station datasets, for mean daily 
temperature, daily minimum and maximum temperature, daily mean wind speed and 
rainfall, have been used as predictands. Downscaling relationships are built using linear 
regression models, calibrated using large scale predictor variables derived from a set of 
key variables describing the day-by-day evolution of the state of the atmosphere in a 
wider region surrounding Singapore.  
 
Before defining predictor variables, it is necessary to reduce the dimensionality of the 
large scale data. This is done using a common EOF (Empirical Orthogonal function) 
analysis (Benestad). In this approach, EOFs, which describe leading spatial patterns of 
variability, are obtained from a concatenated dataset of large scale variables consisting 
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of a time series of ERAInterim reanalyses of observations during for the historical period, 
plus corresponding time series from both historical and future portions of a global 
(CMIP5) climate model simulation selected to provide future downscaled projections. 
The common EOF approach identifies, by construction, patterns of variability present in 
both the observational and GCM data, thus facilitating the application to GCM predictor 
variables of downscaling relationships calibrated using observations. 
 
Predictor variables for the downscaling relationships are then drawn from principal 
components (PCs), which represent the time-dependent contributions of each common 
EOF to the regional state of the atmosphere, in either reanalysis or GCM data. Following 
calibration of the relationships, downscaled projections are then obtained by applying the 
relationships to PC time series taken from both historical and future time slices of the 
relevant CMIP5 simulation.  For this purpose, bias corrections are applied to the 
historical and future PC time series, designed to correct empirically for biases in the 
mean and standard deviation with respect to observations, without altering future climate 
change trends simulated by the GCM.  Example results are provided using two CMIP5 
GCMs, HadGEM2-ES and GFDL-CM3. 
 
The results show that: 

 For mean daily temperature and maximum daily temperature, good quality linear 
regression models can be calibrated from the observed climate. These are able 
to reproduce observed daily variability consistent with station observations and 
ERAInterim data, although the downscaled results do not capture well the lower 
end of the station distribution, particularly for daily maximum temperature.  With 
this caveat, the regression model is assessed as suitable for use in downscaling 
other GCMs. 

 For minimum daily temperature, the calibration step shows only moderate 
predictability of local values from large scale weather variables. However, in this 
case, the linear regression models can be extended to include noise terms which 
describe the remaining variance not predictable from the large scale variables. 
When applied to GCM data, the variance of the predictable term of the statistical 
model improves when the predictor time series are bias corrected. 

 Daily station wind speed can be statistically modelled from observed data quite 
well, with a Generalised Linear Model (GLM) approach based on a Gamma 
distribution in which the location parameter is expressed as the exponential of a 
linear combination of predictors while the dispersion parameter is estimated from 
the residuals. The downscaled wind speed from bias corrected GCM predictors is 
reasonable, and is improved by inclusion of a non-linear random noise 
component, achieved by using a dispersion parameter estimated from fitting 
residuals in the calibration of the GLM. This produces a statistical model which 
improves the description of the tails of the distribution. 

 An attempt to downscale rainfall was made, using a more complex, two-step 
procedure, in which occurrence and intensity are both represented. However, it 
was not possible to produce acceptable calibration relationships for Singapore, 
so we assess the method to be unsuitable for rainfall downscaling. 

 Since the downscaled relationships are all based on linear regressions, daily 
extremes are in general not well represented. Use of predictors from EOF 
analysis may also contribute to this problem, since higher order (and less 
frequent) modes of variability are not used in these statistical models 

 The plausibility of the downscaled future changes is checked through comparison 
with changes in corresponding variables simulated by the relevant CMIP5 model, 
at the grid box containing Singapore. In general, the downscaling results show 
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similar long term signals of change, but differences in future variability, reflecting 
the benefits conferred by accounting better for the characteristics of local station 
distributions through the predictor-predictand relationships. However, for 
variables in which such local influences are relatively dominant, such as 10m 
wind speed, comparison against GCM results is of limited utility in assessing 
credibility. In such cases, comparison with dynamically downscaled results using 
regional climate models is an important additional check.  

 The availability of regional climate model (RCM) simulations from the dynamical 
downscaling work provided an opportunity to carry out this further test. In 
particular, this involved testing a key assumption in these empirical downscaling 
results, that the observed predictor-predictand relationships can be assumed 
stationary (i.e. invariant) in the future. The HadGEM3-RA integrations (historical 
and RCP8.5 scenario) driven by HadGEM2-ES were used, taking HadGEM3-RA 
surface variables for the Changi airport grid box as predictands and HadGEM2-
ES large scale variables as predictors. Predicted values from linear regressions 
calibrated using data from the historical integration were compared with future 
values taken directly from the RCM, and also with fitted values from alternative 
linear regressions using a calibration based on the future climate period. The 
latter describes the fraction of predictand variance explainable by relationships 
with large scale variables. Results showed that Tmean, Tmin and 10m daily wind 
speed were predicted quite well by the linear regression models used in the 
present study. Tmax results were more difficult to interpret, since the RCM grid 
box values have a larger spread than observed Tmax; this result indicates that 
the RCM Tmax for the Changi airport grid box may not be a good proxy for its 
observed counterpart, hence the stationarity test for this predictand is 
inconclusive.  For daily mean temperature and Tmin, residuals from the 
calibration using historical climate data are comparable to the residuals obtained 
from calibration using future climate data, supporting the use of additive white 
noise terms to model the variance not explained by the linear regression models. 
Similar results were obtained for 10m daily wind speed, supporting inclusion of a 
stochastic component in the GLM model used for statistical downscaling of this 
variable, as described above. 

 Since the software is not computationally expensive, the methodology provides 
an opportunity to obtain downscaled projections from a wider range of CMIP5 
models than can be covered using the dynamical approach of Chapter 5 in the 
V2 project. However, the method needs careful assessment on a case-by-case 
basis, since a separate common EOF analysis and statistical calibration is 
needed for each CMIP5 model. Credibility also depends on the quality of the 
simulation of regional climate by the CMIP5 model (for example, large errors can 
necessitate excessively large bias corrections), and on whether the future 
downscaled scenario provides local climate change estimates consistent with the 
grid-scale changes given by the CMIP5 model (see above) . 

 An alternative method of defining EOFs was tested, in which only reanalysis data 
is used to define the optimal patterns of variability (e.g. Murphy, 2000), which can 
then be projected onto either observational data (when calibrating predictor-
predictand relationships), or GCM data (when obtaining downscaled climate 
scenarios using these relationships). This method was used to test the 
robustness of results derived using the common EOF approach, and was found 
to confirm the main conclusions above.  We recommend use of the common 
EOF method where feasible, since the bias correction procedure described 
above is more readily justifiable for  EOFs representing both observed and GCM 
modes of variability. However, the alternative method is also available from the 



 

                             
 

Singapore 2
nd

 National Climate Change Study – Phase 1 

Supplementary Information – Report 2 – Assessment of Empirical Statistical Downscaling 

34 

software provided, noting that it may provide a more convenient option in 
applications involve downscaling many CMIP5 models, since the EOFs only have 
to be calculated once, whereas common EOFs have to be calculated separately 
for each climate model. 
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