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DISCLAIMER OF WARRANTIES AND LIABILITY 

1. While National Environment Agency Meteorological Service Singapore (NEA MSS) has made every reasonable effort 
to ensure that the information contained in this publication has been obtained from reliable sources, NEA MSS shall not 
be responsible for any errors or omissions, or for the results obtained from the use of such information. 

2. NEA MSS shall also not be liable for any damage or loss of any kind howsoever caused as a result of any reliance on 
the contents of this publication. 
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EDITOR’S NOTE 
I am pleased to present the second issue of MSS Research Letters. Following up from the inaugural May 2018 issue, this 
December issue includes a new set of scientific contributions from Meteorological Service Singapore, several written in 
collaboration with researchers from other institutes (National University of Singapore, Singapore Management 
University, MetService New Zealand, and Universiti Sains Malaysia). It is gratifying to see these collaborations, and it is 
my hope that MSS Research Letters will continue to publish collaborative works in the future.  

As with the first issue, many of the contributions in this issue focus on rainfall – highlighting its importance to the region. 
The first contribution extends Singapore’s longest rainfall record back to 1839, from which further study on climate 
variability can be undertaken. The impact of the Madden Julian Oscillation—a key driver of week to week variation in 
the Maritime Continent— on heavy rainfall over the seasons is also investigated. Building on this week-to-week 
variability, the third contribution considers four flood events on the Malay Peninsula and whether the associated heavy 
rainfall could have been predicted up to four weeks before the event. Rounding out the rainfall-related letters, a new 
‘nowcasting’ system to forecast heavy rainfall for the next hour over Singapore is also tested. However, rainfall is not 
the sole meteorological variable investigated; the last contribution investigates the remarkable January 2018 cold spell 
in the historical context.  

Once again, I would like to thank all the reviewers for their time and effort in improving these letters. A big thank you 
must also go to our external reviewers for this issue: Chris Gordon, Debora Hudson, Roberto Buizza, and Winston Chow. 
Your contribution to ensure the scientific integrity of the MSS Research Letters and your guidance to improve these 
letters and MSS Research Letters in general is much appreciated.  

To all our readers, both inside and outside Meteorological Service Singapore, we hope you enjoy this issue of MSS 
Research Letters and will consider submitting suitable material for subsequent issues. 

Warm regards, 
Thea Turkington 
Editor, MSS Research Letters  

 

Cover figures: top – Historical map of Killiney Estate with location of rainfall station (Creating Singapore’s longest 
monthly rainfall record from 1839 to the present, page 6); bottom left – Differences in daily mean minimum temperature 
at Seletar station (Was the Singapore January 2018 cold spell record-breaking? page 27); bottom right – Average daily 
precipitation during Jan 2004 flood event (Subseasonal forecasting of major wet spells in the southern Malay Peninsula, 
page 20) 
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CREATING SINGAPORE’S LONGEST MONTHLY RAINFALL 

RECORD FROM 1839 TO THE PRESENT 
Elaine Gao1, Bertrand Timbal1, Fiona Williamson2, 

1Climate Modelling and Prediction Section, Centre for Climate Research Singapore, 2School of Social Sciences, Singapore 

Management University

INTRODUCTION 
Rainfall in Singapore is highly variable on inter-

annual and multi-decadal timescales. While annual 

rainfall had increased over the past 30 years until 2012 

and has been decreasing more recently, year-to-year 

variations dominate observed trends and are therefore 

not statistically significant (Figure 1a). Similarly, future 

climate projections for Singapore are inconclusive about 

future trend of annual rainfall (Marzin et al. 2015). 

Improved understanding of natural variability on long 

time-scales can significantly reduce uncertainty in 

future climate projections. Currently, the identification 

of decadal variability is limited by the lack of long-term 

meteorological datasets; Singapore’s reliable 

contemporary network of automatic meteorological 

stations (AWS) provides about 30 years of rainfall data 

for the whole island. Besides the modern network of 

AWS (Figure 2), an important historical time series has 

been the official single-station records from MacRitchie 

station, which extend as far back as 1879, providing 138 

years of monthly rainfall data. This time series will be 

useful to evaluate long-term multi-decadal variability in 

this part of the world and potentially in most of the 

tropics.  

Newly-discovered observations from historical 

archives and unofficial sources offer the possibility to 

extend records further back to 1839. This long-term 

record, unique to Singapore, is particularly exciting 

considering the dearth of historical meteorological data 

typical of other tropical countries (Nash and Adamson 

2014). In this study, rainfall data pre-dating the start of 

official MacRitchie observations (1879), are compiled 

from various locations across the island. By making use 

of the contemporary AWS network, the current spatial 

relationships of rainfall between the historical sites and 

the current MacRitchie site are evaluated. Historical 

rainfall at MacRitchie from 1839–present is then 

reconstructed using the archive data, building a single-

location, extended rainfall record (though 

discontinuous). In the process, the reliability of the 

official MacRitchie record is also examined, which is 

comprised of two separate data sources.  
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Figure 1 (a) Current long-term annual rainfall record for MacRitchie station, composite of data from the rain gauge 
managed by the Singapore’s National Water Agency (PUB) and by the Meteorological Service Singapore (MSS). 
Both gauges are located at MacRitchie Reservoir and are situated within 5 m of each other. The differences in 
monthly values between PUB and MSS over time are in (b). 
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DATA  
Three types of monthly rainfall data were used in 

this study: (1) current long-term records from 

MacRitchie station (1879–2016), (2) historical 

observations of rainfall compiled from various sources 

(1839–1883), and (3) contemporary 28-station record 

(1980–2014). Datasets (1) and (2) are detailed below.  

 

(1) OFFICIAL LONG-TERM MACRITCHIE STATION 

RECORDS (1879–2016)  
Presently, there are two rain gauges located 

immediately adjacent to each other in the MacRitchie 

station site near Pumping Station 1. To the authors’ 

knowledge the gauges have not moved since their 

respective installation, though there remains some 

dispute on this matter (Saw and Ang, personal 

communication 2018). The instruments are managed by 

two separate agencies in Singapore, and hence two 

different MacRitchie datasets exist. Observations from 

the instrument currently managed by the Singapore’s 

National Water Agency (PUB) are available from 1879—

present 1 , whilst observations from the instrument 

managed by the Meteorological Service Singapore 

(MSS) are available from 1948—present (Figure 1a). 

Rainfall totals for four months (October 1892, January 

1942, January and February 1947) are missing from the 

                                                                 
1Prior to the establishment of PUB in 1963, the Municipal Committee or Municipal Commission, managed the water 
supply from MacRitchie reservoir. Daily rainfall measurements were made by the Municipal Engineer, with the earliest 
known reference published in The Straits Times (7 Sep 1878), detailing the daily rainfall for Aug 1878, pre-dating the 
official record kept by PUB. Unfortunately, the complete dataset from the Municipal Committee was never published in 
The Straits Times. The Aug 1878 monthly total is consistent with the Global Historical Climatology Network (GHCN-
Monthly) Version 2 dataset for MacRitchie station, the latter of which extends as far back as 1875. 

PUB dataset. These have been replaced by 30-year 

centred-means for each particular month. 

 When comparing the PUB and MSS time series, 

it is apparent that the magnitudes of differences in the 

monthly totals between the two records are notably 

different before and after 1989 (Figure 1b). From 1948–

1989, there is a near perfect correspondence between 

the two gauges, with most differences at 0.9 mm or less, 

possibly due to different rounding approaches, human 

error, or a combination of both. Monthly differences in 

excess of 1 mm were observed on 10 occasions: 

February and March 1953, December 1967, November 

1975, April 1977, October 1978, February 1983 (the 

largest monthly difference at 14.5 mm), as well as June, 

August, and October 1988. Some of these may be due 

to the inconsistent reporting of the start or end of the 

month (e.g. February 1953 the MSS time series is 

3.2 mm higher, and March 1953 the PUB is 2.1 mm 

higher, leading to the possibility that the end of 

February rainfall recorded by MSS may have been 

included in the March PUB time series). Given the 

similarity between the two time series, it is likely that 

during this period the same instrument was used by 

both agencies to compile their monthly statistics. 

Unfortunately, it is difficult with the existing metadata 

to identify the source of the differences between the 

two time series.  

Date PUB Instrument Date MSS Instrument 

1879– 
1953 

Simple manual gauge; only monthly 
records available from PUB from 
1879 – 1948 (though daily readings 
were available, see footnote 1). 
Daily records available from 1949–
present. 

  

1954– 
1983 

Autographic recorder system 
installed; (daily) strip charts 
manually read. 

1948–25 
May 1982 

Natural siphon gauge. 

1984– 
1994 

Tipping bucket rain gauge; monthly 
rainfall charts generated. 

26 May 
1983–7 
May 1987 

Dines tilting siphon gauge. 

1995– 
present 

Electronic data logging system 
installed. 

8 May 
1987–12 
Feb 2009 

Hellman recorder installed. 

  
13 Feb 
2009–
present 

3G tipping bucket recorder installed. Comparison of rainfall 
measured from old and new MSS gauges were done for 13 
months after installation to ensure consistency of instrument 
measurements. Measurements from new gauge logged from 
May 2010 onwards. 

Table 1 Timeline of instrument changes for MacRitchie rain gauge managed by PUB and MSS respectively. 
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From January 1990, a pronounced wet-bias for 

the MSS record in comparison to the PUB record is 

observed, suggesting that from 1990 onwards two 

different instruments were in use at the adjacent MSS 

and PUB sites. This wet-bias in the MSS time series 

persisted until December 1994, after which the relative 

bias was reversed (Figure 1b). Observed monthly 

differences are often very large, with a difference in the 

annual totals of up to 507 mm in 2011. These 

differences and the reversals in biases could be the 

function of the instrumentations used in the two 

adjacent sites, as various changes in instrument types 

have occurred (Table 1). The observed reversal in 

relative biases coincides with the shift in 1995 to an 

electronic data-logging system for the PUB instrument. 

The differences between the PUB and MSS time series 

from 1990 onwards provide a useful opportunity to 

characterise for this location an estimate of the 

background measurement error due to 

instrumentation. This estimate is used as a baseline to 

evaluate the skill of our reconstructed historical record: 

i.e. if the estimate of the error of the reconstructed 

series is no larger than the differences between two 

acceptable instrumentations located at the same site 

then the error falls within an “acceptable measurement 

error” at that particular location.  

 

(2) HISTORICAL OBSERVATIONS OF RAINFALL 

(1839–1883)  

Historical rainfall data were compiled from a 

variety of published sources, such as newspaper 

reports, journal articles, and government records (Table 

2). These observations were made by individuals as well 

as government bodies and include rainfall 

measurements (in inches) as well as descriptive 

accounts of the mean monthly weather.  

While rainfall is relatively simple to observe, we 

know from modern records that large uncertainties 

exist. It is therefore worthwhile to review how 

instrumentation evolved in the 19th and 20th centuries. 

In the mid-1800s, two types of rain gauges, the 

‘common circular’ and the older style ‘graduated glass-

Period 
Available 

Source 
Location(s) of 
Observation 

Nov 
1839–

Feb 1841 

J. S. Travelli (1843), 
American Journal 

Arts and of Science 

Ryan’s Hill mission 
school (H11) 

1841–
Aug 1845 

C. M. Elliot, 
Singapore Magnetic 

Observatory 
Yearbook 

Singapore Magnetic 
Observatory (H8) 

1862–
1866 

J. D. Vaughn, 
Government Gazette 

River Valley Road (H5) 

1864–
1886 

A. Knight, in 
Wheatley (1881)  

Mount Pleasant, Upper 
Thompson Road (H7) 

1869–
1883 

Principal Civil 
Medical Officer 
(P.C.M.O) of the 

Medical Department, 
Government Gazette 
and The Straits Times 

Goodwood Estate (H1) 
Pauper's Hospital (Tan 

Tock Seng) (H2) 
P & O Coy's Depot (H3) 

Perseverance Estate 
(H4) 

General Hospital (Sepoy 
Lines) (H6) 

Convict Prison (H9) 
Kandang Kerbau (KK) 

Hospital (H10) 

Figure 2 Current 28-station network and identified historical stations. Contemporary AWSs are indicated with 
black circles and an alpha-numeric code. MacRitchie station (S7) is highlighted in red. Historical stations are 
indicated by green stars, and tagged as: H1—Goodwood Estate.; H2—Pauper’s Hospital; H3—P & O Coy’s Depot; 
H4—Perseverance Estate; H5—River Valley Road; H6—General Hospital; H7—Mount Pleasant; H8—Singapore 
Magnetic Observatory; H9—Convict Prison; H10—KK Hospital; H11—Ryan’s Hill. 

Table 2 List of identified historical sources of monthly 
rainfall observations and the observation location as 
described in each source. 
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measure’ type gauges were often used together (BAAS 

1855). The new circular gauge was exported from 

Britain to the colonies by the late 1860s, though 

standards for using the instrument were not uniformly 

enforced till the 1880s. During the late 1860s, for 

example, the rain gauge of Colonial Surgeon H. L. 

Randall’s observational series made at Singapore’s 

Convict Jail was placed 2 ft above the ground, whereas 

only 1 ft was recommended. Furthermore, many 19th 

century observational series were made by enthusiastic 

amateurs (volunteer observational network) rather 

than trained meteorological staff. These might be 

plantation owners, such as J. D. Vaughan at River Valley 

Road, who were given a gauge and some basic, practical 

advice on how to use it. However, like Vaughan, many 

of these volunteers had military or naval backgrounds 

and thus some basic scientific and meteorological 

understanding. Where observations were made by 

trained staff, for example at a hospital or a prison, it was 

under prescribed conditions.  

Only quantitative data from published rainfall 

tables were used in this study, with temporal resolution 

limited to the monthly scale as few sources provided 

consistent daily observations. Rainfall tables from the 

Raffles and Horsburgh Lighthouses, published in the 

Government Gazette, were excluded from the study on 

account of their considerable distance from MacRitchie. 

The compiled historical dataset spans 1839–1883, 

overlapping with the official MacRitchie meteorological 

record from 1879–1883 (Table 2, Figure 3). The 

coordinates of each station had to be determined by 

cross-comparison of archived historical maps (National 

Archives of Singapore 2018) with modern-day 

Singapore geography, since no source provided location 

data beyond qualitative descriptors (e.g. street/building 

names). In total, 11 station locations were determined 

(Figure 2), though with varying accuracy. For example, 

from 1862—1866, monthly rainfall measurements were 

taken by J. D. Vaughan and published quarterly in the 

Government Gazette, with the entire dataset later 

compiled by Wheatley (1881). Both sources state that 

the measurements were registered at River Valley Road, 

providing only a crude location estimate. A map from 

1860 places Vaughan’s house near the intersection of 

  
Table 1: List of historical sources providing monthly rainfall 
observations identified in this study, along with the location of 
observation as described in each source.  

Figure 3 Monthly rainfall data availability for identified historical stations, compared with the current official 
MacRitchie record (dark green line). Dashed lines highlight the 1879—1883 period used to validate the 
reconstructed estimated historical MacRitchie series. The shortest station record, Goodwood Estate (dark brown 
line), is 6 months, whereas the longest station record, Mt Pleasant (grey line), is 204 months (17 years). 

Figure 4 Location of River Valley station, as identified through the map of Killiney Estate from Singapore 
Residency (1860; National Archives of Singapore 2018). Site of station assumed to be Mr J. D. Vaughan’s 
residence (black circle).  
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Killiney Road and River Valley Road, which is assumed in 

this study to be the site of his observations (Figure 4). 

As rain gauges were not labelled in historical maps 

(excepting KK Hospital station), stations located in large 

plantation estates, namely the Perseverance Estate and 

Goodwood Estate stations, could not be very precisely 

located. Nevertheless, the impact of location 

imprecision is likely to be small in comparison with the 

other uncertainties in this historical reconstruction.  

Unfortunately, the historical record is highly 

fragmented and discontinuous. At present, no data has 

emerged for the 17-year period between October 1845 

and December 1861. In addition, individual station 

records are relatively short; even the longest station 

record, Mount Pleasant, is only 17 years long and 

therefore insufficient on its own to distinguish patterns 

of decadal variability. Finally, the compiled historical 

records cannot be directly compared against the 

contemporary record as none of the identified historical 

stations are included in the current 28-station 

meteorological network (Figure 2). Hence, rather than 

analyse rainfall variability in each individual historical 

record, the historical data that have been compiled are 

exploited to attempt to extend the existing MacRitchie 

record back in time, thereby providing an estimate of 

historical rainfall for a single site.   

METHOD 

SPATIAL INTERPOLATION BY INVERSE DISTANCE 

WEIGHTING (IDW)  
In order to reconstruct historical rainfall at 

MacRitchie station, the spatial relationship of rainfall at 

the 11 historical stations relative to MacRitchie must be 

determined. To do so, the spatial pattern is assumed to 

be stable since the 19th century. The current 28-station 

network (1980–2014) can be used to approximate the 

spatial relationship between historical locations in the 

19th century. Spatial interpolation by Inverse Distance 

Weighting (IDW) was chosen as it is fast and easy to 

implement, enabling new estimates to be rapidly 

generated whenever revisions to historical station 

locations are made, or new stations are added: 

  ℎ𝑝𝑚 =  
∑ (

𝑧𝑖𝑚
𝑑𝑖

𝑤 )𝑛
𝑖=1

∑ (
1

𝑑𝑖
𝑤)𝑛

𝑖=1

             (1) 

where hpm is the interpolated rainfall at the location of 

historical station p for the month m, zim the measured 

rainfall at contemporary station i for the same month m, 

di the distance between station p and i, and w a positive 

real number determining the rate of decay in weighting 

as a function of distance (Shepard 1968). Hence, the 

monthly rainfall for a historical station is determined by 

a weighted combination of the set of observed 28-

station rainfall for that particular month. As w increases, 

data from stations further from the interpolated p will 

have smaller influence (Figure 5). In most geospatial 

studies, w = 2 is used (e.g. Yang et al. 2015). However, 

there is no theoretical basis for this number and the 

optimal value that minimises interpolation error will be 

heavily dependent on the spatial distribution of known 

data points (Babak and Deutsch 2008). Here, several 

values were tested: w = 0.5, 1, 2, 3, 4, and 5. It was found 

that variations in w had minimal effect on all cross-

validation statistics investigated, likely due to the high 

density of stations across Singapore. In the absence of 

strong rationale to use a different value, the commonly 

used value of 2 for w was retained.  

 
Another factor affecting the accuracy of IDW is 

the size of the domain over which stations are selected 

for interpolation. For this study, we found that limiting 

the number of stations used (e.g. to the 3 or 6 closest 

stations) had only a minor effect on mean errors, with 

accuracy generally improving for higher numbers. 

However, as missing values are a persistent occurrence 

across the 28-station rainfall record and to mitigate the 

effect of missing station data, all 28 contemporary 

stations were used for the IDW interpolation.  

Table 3 Errors associated with IDW interpolation for 
Kampung Bahru on monthly and annual timescales. 

 

The performance of IDW in interpolating station 

rainfall for Singapore is assessed by recreating the 

observed monthly rainfall at Kampung Bahru station 

(S31, Figure 2) from 1980–2014, KBm, by IDW 

interpolation using contemporary data from 27 stations 

KB’ VS KB      

1980–2014 
r MAE RMSE MRE 

Monthly 0.94 28.9 37.4 0.14 

Annual 0.83 127.4 204.9 0.05 

Figure 5 Decay of weighting as a function of 
distance for various values of w.   
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(excluding Kampung Bahru). The hypothetical KBm' is 

then cross-validated against the actual KBm using the 

coefficient of correlation (r), the mean absolute error 

(MAE), mean relative error (MRE), and root mean 

squared error (RMSE; Table 3). This station was chosen 

as it possesses a nearly complete monthly rainfall 

record, enabling more accurate cross-validation, and is 

located close to the cluster of identified historical 

stations. Since IDW is built upon a non-linear distance 

function, its effectiveness as an interpolator is 

dependent on the relative geometric distribution of 

known data points. This effectiveness is unique for each 

station location but will be similar for stations in close 

proximity. The comparison between KBm' and KBm 

should therefore approximate the effectiveness of IDW 

in interpolating for rainfall at the locations of the 

historical stations.  

 On a monthly scale, the recreated KBm' 

correlates well with the observed KBm (Figure 6, Table 

3). The calculated r value (0.94) greatly exceeds the 

threshold for statistical significance (r0.05,n=411 = 0.09). 

Both the MAE (28.9) and RMSE (37.4) are small and on 

par with the measurement uncertainty reported 

between the MSS and PUB MacRitchie observations 

(Table 4), and considering the MRE (0.14), are also 

relatively minor. The correlation decreases slightly 

when aggregating the data annually (r = 0.83; r0.05, n=30 = 

0.35), due to the effect of two outliers in 1983 and 2014 

where IDW severely underestimated observed annual 

station rainfall. Nonetheless, on annual scales the MRE 

is only 0.05, which is in fact smaller than the current 

MacRitchie instrument error (MRE = 0.09) However, 

there appears to be a tendency for IDW to slightly 

underestimate KBm. From Figure 6, the underestimation 

seems to stem from inaccurate representation of 

extreme rainfall events, as errors tend to be significantly 

larger, and consistently negative, for the wettest 

months. As IDW is an exact deterministic interpolator, 

maxima and minima can only occur at known data 

points. The interpolated point will always be less than 

the maximum of the set of values used in its calculation 

(Tomczak 1998). High rainfall months arising from 

spatially localised convective precipitation centred over 

Kampung Bahru will thus be consistently 

underestimated by IDW. Fortunately, systematic errors 

are mitigated by the density of meteorological stations 

in Singapore, since the separation between stations are 

far less than the characteristic length scales of the 

weather systems affecting Singapore.  

 

 

 

RECONSTRUCTING MACRITCHIE RAINFALL FROM 

HISTORICAL STATION DATA 
IDW spatial interpolation yields 420 rainfall time 

series data points (monthly values for 1980–2014) for 

the location of each historical station, which are then 

compared against the observed monthly MacRitchie 

rainfall, 𝑀𝑎𝑐𝑅𝐹𝑚 , over the same period. The ratios of  

ℎ𝑝𝑚/𝑀𝑎𝑐𝑅𝐹𝑚  are averaged by month to give ℎ𝑝�̅�/

𝑀𝑎𝑐𝑅𝐹�̅�. For example, a ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹�̅�  value of 1.11 

for January for River Valley Road indicates this station 

received on average 11% more rainfall than MacRitchie 

station during January for 1980–2014. The historical 

rainfall measurements compiled for each station, Hpm, 

can then be inverted to give an estimate of historical 

monthly rainfall at MacRitchie:  

𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚 = 𝐻𝑝𝑚 ×  (
ℎ𝑝�̅�

𝑀𝑎𝑐𝑅𝐹�̅�
⁄ )

−1

             (2) 

where 𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚 is the estimate of historical rainfall 

at MacRitchie by a particular station p for month m. 

Separate MacRitchie time series are produced from 

each historical station depending on station data 

availability, allowing the skill of each individual station 

reconstruction to be assessed. The final monthly  

𝐻𝑀𝑎𝑐𝑅𝐹𝑚  (1835–1883) compiles all the historical time 

series, averaging across individual station 

reconstructions when more than one is available.  

Since 𝑀𝑎𝑐𝑅𝐹𝑚  overlaps with  𝐻𝑀𝑎𝑐𝑅𝐹𝑚 from 

1879 to 1883 (PUB instrument record only), the fit of 

each historical rainfall reconstruction (Eq. 1, 2) against 

the observed record can be evaluated using the same 

validation metrics (r, MAE, MRE, and RMSE). Errors 

associated with the historical reconstruction are 

evaluated against the errors registered between the 

PUB and MSS instruments in the current MacRitchie 

record. Unfortunately, the relatively short period of 

overlap only enables the fit of five individual station 

Figure 6 Recreated monthly rainfall at Kampung 
Bahru for 1980—2014 using IDW spatial 
interpolation of data from 27-station network (KBm') 
against actual KBm. The black line represents a 1:1 
relationship. 
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𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚  time series to be validated (H3, H6, H7, H9, 

and H10). Finally, the correlation of each 𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚 

time series against each other, where there is 

overlapping data, is also assessed to determine the 

robustness of the reconstruction technique. 

RESULTS AND DISCUSSION 
The reconstructed historical MacRitchie monthly 

rainfall time series, 𝐻𝑀𝑎𝑐𝑅𝐹𝑚 , is presented in Figure 

7(a). A large gap exists between October 1845 and 

December 1861, where no published historical data 

have surfaced yet. Much of the meteorological data 

collected begins in the late 1860s onwards, giving a 

continuous rainfall record from Jan 1862–Dec 1883.  
 

RELIABILITY OF HISTORICAL MACRITCHIE 

RECONSTRUCTION 
In reconstructing 𝐻𝑀𝑎𝑐𝑅𝐹𝑚, Eq. 2 assumes that 

the temporal and spatial relationship of rainfall 

between stations has not changed as a result of climate 

change, nor urbanisation factors. Ignoring the effects of 

urbanisation is highly tenuous, especially considering 

the rapidity of Singapore's urban development since the 

19th century, but is perhaps reasonable in this study as 

the identified stations were located in historically urban 

areas, and therefore experienced much less land use 

change than other parts of Singapore. Indeed, the 

consistency of station-by-station 𝐻𝑀𝑎𝑐𝑅𝐹𝑝  (r > 0.8 

typically, based on comparisons between stations with 

overlapping records) supports the long-term stability of 

spatial relationships.  

Cross-validation of the composite 𝐻𝑀𝑎𝑐𝑅𝐹𝑚 

time series against 𝑀𝑎𝑐𝑅𝐹𝑚  for the period of 1879–

1883 suggests that, although errors on a monthly scale  

are indeed larger than IDW interpolation alone, these 

errors are relatively small. r (0.81) is still well above  

thresholds of statistical significance (r0.05,n=60 = 0.25), 

though MAE (43.6) and RMSE (56.7) are slightly larger,  
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Figure 7 (a) Reconstructed historical MacRitchie monthly rainfall time series (𝐻𝑀𝑎𝑐𝑅𝐹𝑚 ), based on averaging 

available historical station estimates (𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚 ) for the period 1835—1883. (b) Annual rainfall time series, 

including official records, with 10-year running mean. 
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giving a MRE of 0.21 (Table 4). Both MAE and RMSE are 

considerably lower than the mean standard deviation in  

monthly rainfall observed for 𝑀𝑎𝑐𝑅𝐹𝑚  from 1980–

2014, which ranges between 70.3 mm for June to 

149.9 mm for January. There also appears to be no 

systematic bias in error magnitude as a function of 

monthly rainfall. Notwithstanding the small sample size, 

errors associated with annual rainfall estimates are 

effectively no different from IDW (Table 3) and only 

slightly larger than the modern instrument error 

baseline (r = 0.91) with similarly high correlation (r = 

0.97; r0.05,n=5 = 0.81), and low MAE (147.9), RMSE (165.7) 

and MRE (0.06). Surprisingly, there is a reduced 

tendency for underestimation of annual rainfall, which 

could be the result of averaging estimates, both across 

stations in building 𝐻𝑀𝑎𝑐𝑅𝐹𝑚 and within stations in 

using the mean monthly ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹𝑝�̅�.  

However, the use of the annual mean ℎ𝑝�̅�/

𝑀𝑎𝑐𝑅𝐹𝑝�̅� may underestimate changes in rainfall 

variability over time, compounding the shortfalls of the 

IDW interpolation. ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹𝑝�̅� is fairly constant 

throughout the year and across stations (Table 5), 

suggesting that seasonal rainfall variability is fairly 

spatially consistent, with the exception of December, 

January, and February. For these three months, the 

standard deviation of calculated ratios over 35 years is 

substantial, implying significant temporal variability, 

consistently across all stations. The use of the annual 

mean ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹𝑝�̅�  ratio in the historical 

reconstruction may thus be unsuitable for DJF season, 

possibly due to the dominance of the large scale rainfall 

(e.g. cold surges) characteristic of the early phase of the 

Northeast Monsoon. Considering the average standard 

deviation of December ℎ𝑝𝑚/𝑀𝑎𝑐𝑅𝐹𝑝𝑚  across all 

stations (1.49), the 95% confidence interval for the 

December mean ratio is captured by a range of ±0.49, 

which gives variations in the historical MacRitchie 

reconstruction of ±50-100 mm. Nevertheless, the 

average monthly standard deviation for the MacRitchie 

(PUB) time series (1879–2016) during December is 

127.9 mm, so it should be possible to detect signals of 

natural variability even during the most uncertain 

month of the year. Smoothing 𝐻𝑀𝑎𝑐𝑅𝐹𝑚  using a 3-

month running mean also reduces errors (Table 4), 

suggesting the reconstructed time series may be useful 

for seasonal analyses.  

Part of the monthly variability in ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹𝑝�̅�     

may be mitigated by preferentially selecting/weighting 

stations nearest to MacRitchie when building the 

composite 𝐻𝑀𝑎𝑐𝑅𝐹𝑚 time series. For example, Mount 

Pleasant, which is the station closest to MacRitchie, has 

  n r MAE RMSE MRE 

𝐻𝑀𝑎𝑐𝑅𝐹𝑚vs. 𝑀𝑎𝑐𝑅𝐹𝑚(1879 –1883)  

Monthly All 60 0.81 43.6 56.7 0.21 

Dec 12 - 94.0 110.7 0.46 

 3-Monthly 58 0.84 21.2 26.9 0.09 

Annual 5 0.97 147.9 165.7 0.06 

KK Hospital 
(H10) 

60 0.78 46.6 62.6 0.24 

Convict Jail 
(H9) 

36 0.80 49.8 63.8 0.24 

Mount 
Pleasant 
(H7) 

24 0.93 26.1 33.4 0.11 

PUB vs MSS      (1990–2015) 

Monthly 312 0.99 20.2 26.5 0.09 

Annual 26 0.91 233.8 260.3 0.09 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Goodwood (H1) 0.289 0.833 0.155 0.187 0.244 0.240 0.291 0.160 0.225 0.225 0.172 1.298 

Pauper's (H2) 0.213 0.890 0.164 0.179 0.233 0.268 0.309 0.167 0.223 0.222 0.177 1.229 

P&O's Depot (H3) 0.692 0.389 0.269 0.314 0.337 0.311 0.365 0.286 0.366 0.397 0.293 2.214 

Perseverance Est. (H4) 0.195 1.390 0.257 0.227 0.318 0.413 0.341 0.214 0.276 0.290 0.225 1.253 

River Valley Rd (H5) 0.440 0.606 0.202 0.245 0.289 0.290 0.357 0.211 0.292 0.282 0.226 1.694 

SGH (H6) 0.700 0.379 0.298 0.327 0.373 0.342 0.394 0.304 0.377 0.376 0.303 2.280 

Mount Pleasant (H7) 0.114 0.571 0.084 0.089 0.126 0.123 0.145 0.080 0.108 0.113 0.084 0.616 

Sg Observatory (H8) 0.221 0.926 0.178 0.193 0.261 0.297 0.356 0.189 0.254 0.255 0.197 1.354 

Convict Prison (H9) 0.370 0.670 0.182 0.226 0.277 0.282 0.368 0.201 0.280 0.274 0.218 1.594 

KK Hospital (H10) 0.290 0.828 0.160 0.194 0.252 0.260 0.325 0.173 0.243 0.240 0.187 1.384 

Ryan's Hill (H11) 0.289 0.833 0.155 0.187 0.244 0.240 0.291 0.160 0.225 0.225 0.172 1.298 

Table 4 Cross-validation statistics between 
reconstructed HMacRF and official MacRitchie 
rainfall (MacRF) for the period 1879—1883. Statistics 
for December use individual station estimates. The 
difference between PUB and MSS records for 1990–
2015 are also shown. 
 

Table 4 Cross-validation statistics between 
reconstructed HMacRF and official MacRitchie 
rainfall (MacRF) for the period 1879—1883. Statistics 
for the December months are based on individual 
station estimates. The difference between PUB and 
MSS records (lower) for 1990–2015 are also shown. 

Table 5 Standard deviation of  ℎ𝑝𝑚/𝑀𝑎𝑐𝑅𝐹𝑝𝑚 by station from IDW interpolation for the period 1980 – 2014.   

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Goodwood (H1) 0.289 0.833 0.155 0.187 0.244 0.240 0.291 0.160 0.225 0.225 0.172 1.298 

Pauper's (H2) 0.213 0.890 0.164 0.179 0.233 0.268 0.309 0.167 0.223 0.222 0.177 1.229 

P&O's Depot (H3) 0.692 0.389 0.269 0.314 0.337 0.311 0.365 0.286 0.366 0.397 0.293 2.214 

Perseverance Est. (H4) 0.195 1.390 0.257 0.227 0.318 0.413 0.341 0.214 0.276 0.290 0.225 1.253 

River Valley Rd (H5) 0.440 0.606 0.202 0.245 0.289 0.290 0.357 0.211 0.292 0.282 0.226 1.694 

SGH (H6) 0.700 0.379 0.298 0.327 0.373 0.342 0.394 0.304 0.377 0.376 0.303 2.280 

Mount Pleasant (H7) 0.114 0.571 0.084 0.089 0.126 0.123 0.145 0.080 0.108 0.113 0.084 0.616 

Sg Observatory (H8) 0.221 0.926 0.178 0.193 0.261 0.297 0.356 0.189 0.254 0.255 0.197 1.354 

Convict Prison (H9) 0.370 0.670 0.182 0.226 0.277 0.282 0.368 0.201 0.280 0.274 0.218 1.594 

KK Hospital (H10) 0.290 0.828 0.160 0.194 0.252 0.260 0.325 0.173 0.243 0.240 0.187 1.384 

Ryan's Hill (H11) 0.289 0.833 0.155 0.187 0.244 0.240 0.291 0.160 0.225 0.225 0.172 1.298 

 Table 5 Standard deviation of  ℎ𝑝𝑚/𝑀𝑎𝑐𝑅𝐹𝑝𝑚 by station from IDW interpolation for the period 1980 – 2014.   
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the lowest spread of ℎ𝑝�̅�/𝑀𝑎𝑐𝑅𝐹𝑝�̅�  ratios in 

December. Looking at the reconstructed time series 

from individual stations (Table 4), it is again apparent 

that errors are smaller closer to MacRitchie, with the 

stations in Table 5 listed in descending order of distance 

from MacRitchie, although the amount of data for each 

station varies. Determining how this weighting function 

should evolve with distance from MacRitchie requires 

further study. In the study’s absence, the final 

𝐻𝑀𝑎𝑐𝑅𝐹𝑚  time series is built using a simple average of 

available 𝐻𝑀𝑎𝑐𝑅𝐹𝑝𝑚  data, with station reconstructions 

given equal weighting regardless of distance to 

MacRitchie.     

CONCLUSION 
Singapore is fortunate to have possibly the 

longest single-site historical monthly rainfall record 

within the tropics, with the MacRitchie station 

extending as far back as 1879. However, the reliability 

of reported rainfall measurements is not without 

question, with various data sources indicating different 

values. We have shed new light on the differences 

between the various data sources to help produce an 

authoritative time series.  

In addition, newly discovered historical source 

materials provide monthly observations as far back as 

1835, albeit incomplete. Through careful review of 

archived historical map data, the locations of the 

identified meteorological stations have been 

determined. By estimating the spatial relationships of 

rainfall over Singapore using the modern 

meteorological station network, a reconstructed 

historical rainfall at the MacRitchie location has been 

generated, thereby integrating these fragmented 

historical datasets with the official long-term Singapore 

rainfall record.  

This single time series extended back in time 

and documented in terms of the difference between 

various records for the modern area provides a strong 

basis for studies on decadal to inter-decadal climate 

variability in Singapore and the neighbouring Western 

Maritime Continent. Meanwhile, the search for 

alternative sources of rainfall data during the 1840s to 

1860s will continue to help fill in the remaining gaps in 

the current historical reconstruction.  

An important caveat to note for future use of 

this time series, is that due to uncertainties regarding 

the variability of spatial rainfall distributions, as well as 

the precise location of some of the historical measuring 

stations, analysis of the reconstruction should be 

limited to seasonal and annual time scales, and relying 

on single month values should be avoided especially for 

the winter months (December, January and February).  

Further studies, examining the spatial pattern 

of rainfall in Singapore, could help constrain the  

parameters used in the IDW interpolation, as well as 

investigate other interpolators than IDW. This could 

enable the inclusion of a wider range of historical 

station data, for example measurements taken at the 

Raffles and Horsburgh Lighthouses, which could help fill 

the gaps in the reconstruction. 
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A SEASONAL PERSPECTIVE OF THE MADDEN-JULIAN 

OSCILLATION’S IMPACT ON SINGAPORE RAINFALL 
Cheong Wee Kiong and Zheng Kaiyuan 

Central Forecast Office, Weather Services Department, Meteorological Service Singapore

INTRODUCTION 
The Madden-Julian Oscillation (MJO) is a source 

of large-scale atmospheric variability that occurs on an 

intraseasonal timescale (30–90 days) that is 

accompanied by deep convection propagating 

eastwards near the equator. It was discovered in 1971 

by Roland Madden and Paul Julian from the National 

Center for Atmospheric Research after they observed a 

long-period variation in the surface pressure and zonal 

winds while analysing measurements made at the 

Canton Island (Madden and Julian 1971). 

Several studies have documented the MJO’s 

influence on the variability of rainfall over the Pacific 

islands, in the monsoon regions of Asia (Sui and Lau 

1992; Lawrence and Webster 2002), and Australia 

(Hendon and Liebmann 1990). Xavier et al. (2014) 

showed that convectively active (suppressed) phases of 

MJO can increase (decrease) the probability of extreme 

rain events over the land regions of Southeast Asia by 

about 30–50% (20–25%) during the November–March 

season.  

Singapore has a climate characterised by 

frequent and intense rainfall, high humidity and high 

temperature, which are almost constant throughout the 

year. There are no marked wet and dry periods as 

rainfall occurs in every month of the year (Figure 1), 

nevertheless mean monthly rainfall shows drier 

weather conditions during the Southwest Monsoon 

(June to September) and wetter conditions in the 

months of November to January (wet phase of the 

Northeast Monsoon). During the dry phase of the 

Northeast Monsoon season (late January to mid-

March), it is not uncommon to experience fair and 

occasionally windy days with little or no rain. However, 

as the wind-driven weather patterns affecting 

Singapore are chaotic and with Singapore’s small 

geographical extent, it is challenging to forecast the 

amount of rainfall over Singapore. 

Figure 1 Locations of the 28 rainfall stations used in this study (bottom right numbers indicate the station 
codes). Maximum of the daily rainfall were extracted from these 28 stations to construct the multi-station 
daily maximum time series. Bottom right corner of the figure shows the average monthly rainfall over 
Singapore using climatological rainfall data from 1981–2011. 
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Singapore is located within the Maritime 

Continent where the MJO has an effect in modulating 

the weather patterns, and many of the current 

numerical weather prediction models show useful skill 

in forecasting MJO phases 2–3 weeks ahead (Matsueda 

and Endo 2011). Therefore, it motivates us to 

investigate and quantify the influences of the MJO on 

Singapore’s rainfall with the objective of providing 

guidance in forecasting rainfall amount over Singapore 

using predicted MJO conditions. 

DATA AND METHOD 
Meteorological Service Singapore has since 1980 

recorded hourly rainfall data across an island-wide 

network of 28 real-time automatic weather stations 

using tilting-siphon rain recorders. The distribution of 

stations over the island is shown in Figure 1. For this 

study, data from 1980 to 2011 were used. From these 

data, a multiple-station daily time series is computed by 

extracting the maximum of the daily rainfall from all the 

28 stations. The rationale for using the maximum 

rainfall rather than the average rainfall across the 28 

stations was to provide guidance in forecasting extreme 

rainfall, which is valuable to operational weather 

forecasters.  

The dataset has been quality controlled using 

basic procedures (e.g. negative daily precipitation 

amounts were removed). Only two stations have 

incomplete instrumental records: S72 (Tanjong Pagar), 

available from 1982 to 2011 and S76 (Admiralty West), 

from 1982 to 2009. All time series contain less than 10% 

of missing data. In order to capture the annual cycle, the 

rainfall data is clustered into 2-month bins. From the 

daily pan-island rainfall time series, several statistics 

were computed: percentage of rain days (days with 

rainfall intensity ≥ 1mm), as well as median and 

percentiles of daily rainfall intensity for each of the 2-

month clusters. 

 To investigate the seasonal dependency on the 

impacts of the MJO on Singapore rainfall, the commonly 

used all-season Real-time Multivariate MJO (RMM) 

Index was used, based on Wheeler and Hendon (2004) 

and is available on the Australian Bureau of 

Meteorology website (BoM 2018).  

MJO episodes were qualified as either strong 

(RMM amplitude > 1) and weak (RMM amplitude ≤ 1) 

and counted for each 2-month clusters (Figure 2). On 

average there are more strong than weak MJO days—

out of the total number of cases in the dataset, 59.6% 

are strong MJO days while 40.4% are weak MJO days.  In 

addition, strong MJO days occur around 62% of the time 

in the Northeast and inter-monsoon months (October 

to May) and 55% of the time in the Southwest Monsoon 

months (June to September). Generally, the data are 

relatively well distributed across the 2-month clusters 

except for fewer cases in Phases 1 and 2 of strong (RMM 

amplitude >1) MJO episodes during February to March 

(Figure 2b) and in Phase 7 during August to September 

(Figure 2e).   

The rainfall statistics were then differentiated for 

the various 2-month clusters based on the MJO phases 

and magnitude. A difference is considered to be 

statistically significant if significant at the 5%-level using 

the binomial p-value test with reference to the sample 

in each individual cluster. Overall the difference in 

sample sizes across the clusters is limited and the 

sample size for each cluster is large enough to ensure 

robust results and do not impact the analyses proposed. 

RESULTS AND DISCUSSION 
Before looking at rainfall amount, the role of the 

MJO on the frequency of occurrences of rainfall is 

investigated. The percentage of raindays (not shown) 

indicates no significant differences in all phases of the 

MJO activity for the annual mean, as well as for the 2-

month clusters, except during Phase 6 of both strong 

and weak MJO episodes. However, a lower percentage 

of raindays are noted during the Southwest Monsoon: a 

decrease from 79% for all phases to 63% and 68% for 

June–July and August–September, respectively.  

To assess the impact of MJO on rainfall amount, 

the median daily rainfall totals are evaluated during 

strong and weak MJO episodes. The term “moderate 

raindays” is used for days with daily rainfall totals higher 

than the median daily rainfall totals recorded over all 

MJO phases.  This is shown for the annual mean and for 

the six 2-month clusters (Figure 3). 

During strong MJO episodes, Singapore 

experienced higher median rainfall amounts during 

Phases 1-4 and lower amounts during Phases 5-7 almost 

throughout the year (Figure 3a).  Nearly half of the 2-

month statistics indicate a significant tendency. A higher 

percentage of moderate raindays was experienced 

during Phase 3 of strong MJO episodes when intense 

organised convection occurs over the western Maritime 

Continent in the Northeast Monsoon and inter-

monsoon months from October to May (Figure 3g, b-d). 

For the Southwest Monsoon season, statistically 

significant higher percentage of moderate raindays are 

observed during Phase 2, instead of Phase 3, of the 

strong MJO episodes i.e. when intense organised 

convection occurs over the East Indian Ocean (Figure 
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3e, f). The northward propagation and variability of the 

MJO extending further from the equator during boreal 

summer, compared to the eastward propagation 

around the equator during the boreal winter, could be 

contributing towards the differences across seasons 

(Kemball-Cook and Wang 2001).   

Another interesting result is the statistically 

significant higher percentage of moderate raindays 

during the inter-monsoon months (April–May and 

October–November) when strong MJO activity is over 

the West Indian Ocean (Phase 1), which is relatively far 

from Singapore (Figure 3d, g). Such tendency in higher 

percentage of moderate raindays during this period of 

time could most probably be attributed to locally 

develop intense thunderstorms, and not necessarily 

directly influenced by the MJO. During these inter-

monsoon months, the sun is almost directly overhead at 

the equator, and locally developed intense 

thunderstorms mainly caused by strong convection due 

to strong solar heating of land areas are common over 

Singapore.  

When deep organised convection occurs over 

the Central Pacific Ocean (strong MJO in Phase 6), a 

generally lower percentage of moderate raindays is 

experienced throughout the year, except in February– 

March when no significant tendency is observed in the 

statistics (Figure 3). During December–May and June–

November, Singapore experiences a lower percentage 

of moderate raindays when deep organised convection 

occurred over the western and eastern Pacific Ocean 

(strong MJO in Phases 5 and 7) respectively (Figure 3). It 

is also notable the significant decrease in the median of 

Figure 2 Bi-monthly number of cases considered for strong MJO (RMM amplitude > 1, blue) and weak MJO 
(RMM amplitude ≤ 1, orange) across all MJO phases between 1980–2011.  
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the daily rainfall intensity during the Southwest 

Monsoon (June – September) when strong MJO is in 

Phase 6 (Figure 3d, e, f).  

During weak MJO (amplitude < 1) episodes, there 

is generally no significant impact on the percentage of 

moderate raindays over Singapore, except for the few 

instances highlighted in Figure 3. 

For very heavy raindays (defined as days with 

daily rainfall totals ≥ 70mm, the 90th percentile) over 

Singapore, MJO activity has an influence on the 
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Figure 3 Median daily rainfall totals (mm). Height of bars indicates the median rainfall totals for each MJO phase 
and the border colour indicates the strength of MJO (blue – strong and orange – weak). Horizontal line indicates 
the median rainfall regardless of the MJO phases and colour indicates the strength of MJO. Yellow/green shaded 
areas indicate statistically significant (at 5% level) higher/lower percentage of days with daily rainfall intensity 
heavier than the median of the daily rainfall totals recorded over all MJOs’ phases. 
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percentage of days, in particular in Phases 3, 6, and 7. 

When strong MJO is in Phase 3, a tendency to a higher 

percentage of very heavy raindays is observed during 

October– January and April–May (18.1% of the time, 

relative to the average frequency of 12.4%; Figure 4b, d, 

g). This relationship is similar to that for the percentage 

of moderate raindays. The statistically significant 

tendency in a higher percentage of moderate raindays 

during February–March however, is not detected for 

the percentage of very heavy raindays (Figure 4c). 

Interestingly, a higher percentage of very heavy 

raindays during October–March is experienced when 

weak MJO is observed over the East Indian Ocean 

(Phase 2; Figure 4b, c, g); this relationship is not 

observed for the percentage of moderate raindays 

discussed above. 

Figure 4 Same as Figure 3, but for percentage of days with daily rainfall totals above 70mm (very heavy raindays). 
Units are in %. 
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A statistically significant lower percentage of 

very heavy raindays are noted during April–September, 

when deep organized convections occurred over the 

Central Pacific Ocean and East Pacific Ocean (Phases 6 

and 7) respectively (Figure 4d-f). 

CONCLUSION 
This study presents evidence that the MJO 

phases and amplitude modulate the daily rainfall 

intensities over Singapore. In general, Singapore 

experiences a higher percentage of moderate and very 

heavy raindays when strong MJO activity occurs over 

the western Maritime Continent (Phase 3) during the 

Northeast Monsoon and inter-monsoon months 

(October–May) while a higher percentage of heavy 

raindays are observed when strong MJO activity occurs 

over the East Indian Ocean (Phase 2) during the 

Southwest Monsoon months (June–September). In 

general, a lower percentage of moderate and very 

heavy raindays are experienced when deep organized 

convection occurs over the Central Pacific Ocean (strong 

MJO in Phase 6). The impact on the rainfall over 

Singapore during weak MJO (amplitude < 1) episodes is 

relatively limited and isolated, except for the higher 

percentage of very heavy raindays persisting from 

October to March when weak MJO occurs over the East 

Indian Ocean (Phase 2). This highlights that more than 

one aspect of weather statistics is required when 

investigating the relationships between local rainfall 

and large-scale weather phenomena, as different 

weather statistics might lead to different conclusions. 

While some local rainfall statistics may not exhibit 

strong relationships with large scale phenomenon, 

other local rainfall statistics may indicate otherwise.  

The present study shows that while the MJO 

has minimal impact on the frequency of raindays, it 

strongly modulates the rainfall intensities over 

Singapore. While other drivers besides MJO activity are 

also likely to impact rainfall statistics, the results 

presented here provide useful guidance for forecasting 

at the subseasonal-to-seasonal timescale. 
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INTRODUCTION 
Flooding is one of the main hydro-

meteorological hazards for the southern Malay 

Peninsula (Tan et al. 2018). For example, the December 

2006 to January 2007 floods were one of the worst 

floods in the region causing at least 17 deaths, 103,000 

residents to be displaced, 800 badly damaged or 

destroyed houses, and an estimated 52,000 hectares of 

damaged agricultural land (DREF 2007). To help prepare 

for and mitigate such events, weather and seasonal 

climate predictions are used. 

Given the timescales over which flood events 

occur, subseasonal-to-seasonal (S2S) forecasts have the 

potential to be useful. An S2S forecast database has 

been available since 2015 as part of the WWRP/WCRP 

S2S Prediction Project (Vitart et al. 2017). These 

forecasts, submitted by several operational centres, 

provide meteorological information for two weeks to 

two months into the future: providing a longer lead time 

than traditional weather forecasts of a couple days and 

more detailed information than seasonal forecasts. 

These two factors are important for extreme events. It 

has already been shown that the overall skill of S2S 

models in predicting precipitation is relatively high for 

Southeast Asia (Li and Robertson 2015). However, there 

have been few case studies analysing model 

performance for extreme hydro-meteorological events 

for this region. 

This letter analyses S2S forecasts for selected 

extreme hydro-meteorological case studies over the 

southern Malay Peninsula, in particular for the Johor 

River Basin (JRB). The S2S forecasts are assessed along 

with the background meteorological conditions, such as 

the Madden Julian Oscillation (MJO) and Northeast 

Monsoon cold surges. The evaluation of the case studies 

is also compared to overall skill of the model. 

STUDY AREA 
Johor River Basin lies between latitudes 1.5⁰N 

and 2.2⁰N, and longitudes 103⁰E and 104⁰E (Tan et al. 

2018). The length of the Johor River is about 122 km and 

flows in a north–south direction towards the Straits of 

Johor (Figure 1). The catchment spans a total area of 

about 1652 km2 with elevation ranging between 3 m 

and 977 m above mean sea level (Tan et al. 2018). 

Flooding is the main hydro-meteorological hazard in JRB 

and occurs frequently during the Northeast Monsoon 

between the months of December to March (Tan et al. 

2015). 

 
The region’s climate is influenced by drivers at 

various spatial scales. Large-scale atmospheric drivers 

include those such as El Niño–Southern Oscillation 

(ENSO) and the Indian Ocean Dipole. The MJO, one of 

the main subseasonal drivers globally, tends to bring 

more rainfall during Phases 2–4 and drier conditions 

during Phases 6–8 for the region (Xavier et al. 2014). 

During the Northeast Monsoon, strong winds over the 

South China Sea associated with southward intrusions 

of the Siberian high bring increased convection over the 

Maritime Continent, termed cold surges (Lim et al. 

2017). When cold surges and the MJO occur at the same 

time, the rainfall pattern tends to more closely 

resemble a cold surge, with the MJO increasing the 

extreme rainfall response in the region in Phases 2–4 

(Lim et al. 2017). 

Figure 1 Map of Johor River Basin, including Rantau 
Panjang streamflow gauge (red triangle). 
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DATA AND METHODOLOGY 
Four case studies were identified based on media 

reports on flood damages in southern Malay Peninsula 

(Table 2). Each event was given a seven-day range, a 

common period used in S2S forecasts, corresponding to 

the week with the highest rainfall amount either just 

before or during the flood events.  

This study used S2S forecasts from the ECMWF 

model (Vitart et al. 2017), as this model has shown 

relatively higher skill than other models for Southeast 

Asia (Li and Robertson 2015). The model is run every 

Monday and Thursday, producing 51 ensemble member 

forecasts up to 46 days in the future. Twenty years of 

re-forecasts are also produced starting on the same day 

of the year as the forecast, each comprised of 11 

ensemble members. Re-forecasts are similar to 

forecasts, but run for past dates. These re-forecasts are 

used for assessing the model’s skill and calibrating the 

model against its climatology. Re-forecasts can also be 

used for analysing case studies using a newer version of 

the model. Since S2S ECMWF forecasts are only 

archived from 2015 onwards, this letter focused on re-

forecasts. 

Table 1 Summary of data retrieved from IRI Data 
Library. The original resolution of the ECMWF model 
varies between 0.25° and 0.50° (Vitart et al. 2017).  

 Spatial 
resolution 

Temporal 
resolution 

Temporal 
coverage 

ECMWF (re-
forecasts) 

1.50° Daily 1995–2017 

CHIRPS 0.25° Daily 1981–2018 

TRMM 0.25° Daily 1998–May 
2015 

 

Two gridded, satellite-based datasets were used 

for verifying the forecasts: Climate Hazards Group 

InfraRed Precipitation with Stations (CHIRPS), and 

Tropical Rainfall Measuring Mission (TRMM). 

Developed by the US Geological Survey and the 

University of California, Santa Barbara, CHIRPS is a near-

global rainfall dataset. The dataset uses satellite 

imagery, calibrated by TRMM Multi-Satellite 

Precipitation Analysis version 7, along with station-

based rainfall data to create a gridded rainfall dataset 

over land (Funk et al. 2015). The other gridded dataset, 

TRMM, is based on a variety of sensors and sources, 

such as the TRMM Precipitation Radar for its outputs, 

and covers both the land and ocean (Huffman et al. 

2007). A summary of the resolution and temporal 

coverage for these two datasets, as well as the S2S 

ECMWF model, can be found in Table 1. Satellites 

provide area-averaged rainfall estimates, which contain 

uncertainties related to the spatial and temporal 

resolution of the satellites, as well as to the methods 

used to derive the estimates (Huffman et al. 2007). 

Therefore, while these datasets are not independent, it 

is still useful to compare model assessments using 

different observational datasets. 

Weekly re-forecast anomaly plots were 

created for four lead times for each of the case studies. 

Lead time 1 refers to the forecast from the start of the 

first week (the first seven days of the re-forecast), lead 

time 2 refers to the forecast run starting from a week 

prior (days 7 to 14 of the re-forecasts), up to lead time 

4 that refers to the forecast run three weeks prior to the 

start of the case study (days 21 to 28 of the forecast). 

The anomalies were calculated using: 

𝑎 = 𝑟 − �̅�                  (1) 

where 𝑎 is the weekly anomaly,  𝑟 is the weekly rainfall 

total and �̅� is the average weekly total (1998–2014). In 

the case of the re-forecasts, the 11 ensemble members 

were first averaged before calculating the weekly 

anomalies and climatologies. 

The weekly re-forecast anomaly plots were then 

compared with observed weekly anomaly plots to 

determine forecast quality. For easier comparison, the 

TRMM and CHIRPS datasets were re-gridded from the 

original 0.25⁰ resolution to the 1.50⁰ resolution of the 

models in the S2S Project database. 

To assess the overall skill, the correlation of 

anomalies (CORA) and mean square skill score (MSSS) 

were also calculated. CORA, also called “anomaly 

correlation coefficient”, measures the linear association 

between the predicted anomalies and the observations. 

Therefore, it measures the relative association between 

the variables, rather than the overall accuracy of the 

forecast. CORA varies between 1 (perfect association) 

and -1, and can be measured using the following: 

𝐶𝑂𝑅𝐴 =
∑(𝑎𝑟𝑒)(𝑎𝑜𝑏)

√(∑ 𝑎𝑟𝑒
2)(∑ 𝑎𝑜𝑏

2)
                     (2) 

where 𝑎𝑟𝑒  is the reforecast ensemble mean anomaly 

and 𝑎𝑜𝑏  is the observed anomaly. 

The mean square skill score is based on the mean 

square error, where the maximum value is 1 for a 

perfect forecast, and a negative value implies the re-

forecast is less skill full than the climatology. When 

using anomaly values, the MSSS is calculated using:  

𝑀𝑆𝑆𝑆 = 1 −
∑(𝑎𝑟𝑒−𝑎𝑜𝑏)2

∑ 𝑎𝑜𝑏
2        (3) 

For both skill scores, the observed anomaly is 

based on the TRMM data. CHIRPS was not used as it only 
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covers land points, and therefore would not provide 

information for the skill over the ocean. Each month was 

also calculated independently due to potential seasonal 

differences in skill. 

The IRI Data Library (IDL) was used to retrieve, 

process, and plot the data (Blumenthal et al. 2014). The 

IDL is an online data repository and analysis tool using 

the INGRID Data Analysis Language. The analysis tool 

allows for easy re-gridding, as well as creating and 

plotting of anomalies. 

RESULTS AND DISCUSSION 
 Four major weather events during the months of 

December to March were identified. The events are 

summarised in Table 2, along with the observed average 

daily rainfall and daily average 925 hPa wind for the 

mid-point of the week for the events in Figure 2. Cold 

surges based on Lim et al. (2017) were identified when 

wind at 850 hPa, averaged over 5°–10°N and 107°–

115°E, was greater than 0.75 standard deviations above 

the mean, while the mean sea level pressure, averaged 

over 18–22°N and 105–122°E, was greater than 

1020 hPa. The ENSO state was based on the Nino 3.4 

index (Turkington et al. 2018), while the MJO Phase was 

based on the RMM index (BoM 2018). A brief 

description of each event is provided below.  

CASE STUDIES 
1. 23–29 January 2004 

During this event, the MJO was in the wet phases for the 

region, continuing the strong MJO activity that 

developed in December 2003. MJO Phase 2 is associated 

with active convection over the western Maritime 

Continent (Lim et al. 2017) and may be why there is less 

above-average rainfall over the eastern Maritime 

Continent (top two rows, first column, Figure 3). A cold 

surge was also present for the first half of the event, 

noted by the strong north-easterlies in the South China 

Sea (Figure 2a). The observed rainfall anomaly maps for 

this event strongly resembles a cold surge, with positive 

rainfall anomalies over southern Malay Peninsula, as 

well as western and northern Borneo (Lim et al. 2017). 

 

 

 

 

Week 
Discharge 

(m3/s) 

Weekly Total (mm) 
ENSO 
state 

MJO 
Phase 

Cold Surges Rain 
Gauge CHIRPS 

 
TRMM 

1 23–29 Jan 2004 29 225 250 230 Neutral 2–3 22–26 Jan 

2 6–12 Mar 2004 108 440 140 230 Neutral 3–4 06–09 Mar 

3 16–22 Dec 2006 185 560 260 480 Neutral 3 17–23 Dec 

4 25–31 Jan 2011 92 360 250 360 La Niña 8–decay 24 Jan–2 Feb 

a)2004 Jan 

b) 2004 Mar 

c) 2006 Dec 

d) 2011 Jan 
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Figure 2 Average daily precipitation during the event 
week (CHIRPS), and the daily wind direction and speed 
mid-week (NCEP-NCAR Reanalysis, Kalnay et al. 1996). 

discharge at Rantau Panjang station (00°-104.00°E). 

  
Table 2 The four case studies, with associated ENSO states, MJO Phases, and cold surges. As estimates for the size of 
the events, the weekly average discharge at Rantau Panjang station (Discharge) is provided along with the weekly 
total measured by the rain gauges (Figure 1) and the CHIRPS and TRMM data (averaged over 1.50°–2.25°N, 103.00°–
104.00°E). 
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Even with the smallest recorded discharge in 

Table 2, homes were evacuated in the region, as well as 

in Sarawak where 2000 homes were submerged and in 

Sibu where RM20 million in damages was recorded 

(Dartmouth 2018a). The entire flood event lasted from 

24th January to the 3rd of February. 

2. 06–12 March 2004 

The MJO Phase for this event was from a wet phase (3) 

to transitional phase for the region (4). These phases 

bring above-average rainfall for the entire Maritime 

Continent (Xavier et al. 2014), similar to the widespread 

above-average rainfall during this event (top two rows, 

second column, Figure 3). A cold surge was also present, 

although the north-easterlies were slightly weaker than 

the other case studies (Figure 2). Cold surges are less 

common in March compared to December and January, 

and those that occur from February onwards tend to 

bring less rainfall for southern Malay Peninsula (Lim et 

al. 2017). However, heavy rainfall was still recorded 

(Table 2, Figure 2b) and could be attributed to the MJO’s 

presence. 

Figure 3 Weekly rainfall anomalies for the 2004 Jan, 2004 Mar, 2006 Dec, and 2011 Jan events. The top two panels 

show observed anomalies using CHIRPS and TRMM; the lower panels show the re-forecast anomalies from ECMWF 

at various lead times. 
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This event recorded the second largest 

discharge (Table 2), affecting both Singapore and Johor. 

For Johor 12,400 people were displaced over eight 

districts in the region (Dartmouth 2018a). The entire 

flood event lasted from 8th to 13th of March, the shortest 

of the four case studies.  

3. 16–22 December 2006 

For this event, a coherent MJO signal only developed in 

mid-December in Phase 3, as the supressed convection 

phase of the MJO gradually moved eastward and 

reaching the Maritime Continent by the end of the case 

study week. This MJO development may explain why 

the above-average rainfall is less extensive than for the 

previous two case studies (first two rows, Figure 3). 

However, the north-easterlies in the South China Sea 

associated with an extended cold surge that lasted for 

six days, contributed to the enhanced rainfall over 

southern Malay Peninsula. 

Recording the largest discharge amount of the 

case studies, this event also caused significant damage 

to the region and Singapore. While the heaviest rainfall 

fell 16th–22nd December, the flood event itself lasted 

until the 13th of January. More than 90,000 people were 

displaced in Johor and Malacca, with damages from 

floods and landslides amounting to 22 million USD 

(Dartmouth 2018b). 

4. 25–31 January 2011 

The MJO signal had been in the dry phase prior to the 

event (Phases 6 and 7 from mid-January). By the 25th of 

January the MJO was in Phase 8, which normally brings 

drier conditions, although the MJO decayed rapidly 

during the week. However, there were strong north-

easterlies at 925 hPa (Figure 2d), indicative of a cold 

surge. Therefore, it is likely the cold surge, which lasted 

throughout the week, dominated over the MJO. 

Furthermore, this case occurred during a La Niña event. 

La Niñas bring above-average rainfall to much of the 

Maritime Continent, although not necessarily to 

southern Malay Peninsula, and therefore may explain 

the wide spread above-average rainfall compared to 

cases 1 and 3 (top two rows, Figure 3). 

The January 2011 flood lasted from the 29th of 

January to 4th of February, where riverbank overflow 

affected areas like Segamat, Batu Pahat, Kluang and 

Muar, resulting in multiple deaths and 24,000 people 

displaced (Reliefweb 2018). 

S2S FORECASTS 
The anomaly patterns over Southeast Asia for 

lead times 1 and 2 (rows 3 and 4, Figure 3) match the 

TRMM and CHIRPS data (rows 1 and 2, Figure 3) for all 

case studies. Furthermore, all ensemble mean re-

forecasts predict above-average rainfall for southern 

Malay Peninsula. Regionally, the re-forecasts also pick 

up the variation between the events, with a smaller 

extent for the December 2006 case study compared to 

the other three case studies. Based on these results, a 

two week lead time shows potential for the prediction 

of extreme hydro-meteorological events. 

The ability of the re-forecasts to capture the 

heavy rainfall is less consistent between case studies at 

lead times 3 to 4, most notably for the January 2004 

case (rows 5 and 6, Figure 3). The re-forecasts predict 

drier conditions at these lead times for this case. From 

the observations however, the pattern resembles a cold 

surge, suggesting that this is the dominant driver for the 

event. Cold surges can be tied to mid-latitude weather 

systems such as the Siberian High. S2S forecast skill is 

much lower over the mid-latitudes (Li and Robertson 

2015), and this link with mid-latitudes may be the 

reason some events were not predicted at longer lead 

times. Although, the results from other case studies 

suggest that some cold-surge events may be predicted 

at lead times 3 and 4. 

For the March 2004 case, the widespread 

rainfall anomaly is still captured in lead time 3, along 

with intensified rainfall over southern Malay Peninsula. 

Even though wet cold surges are unusual for this time of 

year, the ensemble mean appears to identify this event 

with a lead time of three weeks, potentially linked with 

the developing strong MJO at that time. For this case; 

however, the rainfall anomaly pattern at lead time 4 

bears little resemblance to the observed pattern. 

For the other two cases, above-average rainfall 

is forecasted at lead time 3, although the anomaly is not 

as large as what was observed (row five, Figure 3). At 

lead time 4, the rainfall anomaly pattern resembles the 

observed pattern although there are noticeable 

differences in location, along with weaker anomalies. 

SKILL SCORES 
Skill scores for December and March were 

computed using CORA and MSSS to estimate the overall 

skill of the S2S forecasts for these two months. The 

scores for the two months are similar (Figure 4), with 

the band of highest skill following the Intertropical 

Convergence Zone. 

The skill declines from lead time 1 to lead time 

4, similar to the case studies. The skill scores are highest 

for lead time 1. At lead time 2, the scores are higher in 

CORA than MSSS, although this may be due to CORA 

being based on only the association, rather than the 
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absolute difference, between the anomalies. The MSSS 

skill score for lead times 3 and 4 is generally low (<0.2) 

for the region studied, although there is still a slight 

positive correlation for CORA. 

The skill over the ocean appears to be higher 

than over land for longer lead times in December (Figure 

4). The Indian Ocean west of northern Sumatra and 

south of Java, along with the Java Sea and equatorial 

western Pacific Ocean, have the highest skill, while 

there is little to no skill over the Malay Peninsula, 

Sumatra, and Borneo. For March, the band of highest 

skill shifts further north, similar to the migration of the 

Intertropical Convergence Zone. This northward shift in 

skill also corresponds to an increase in the skill over the 

Malay Peninsula, possibly explaining why the March 

case study performed better than the January case 

study in 2004. 

GENERAL DISCUSSION 
The analysis of the S2S forecasts skill depends 

on the quality of observation data. Comparing the 

satellite data used for forecast verification with the 

observations by the rain gauges, the weekly totals in 

Table 2 show discrepancies between the datasets. 

While differences would be expected between area-

averaged (gridded) products and those from point-

based rain gauges, TRMM aligns better with the rain 

gauges, apart from March 2004 where TRMM records 

210 mm less rainfall (weekly total) than the rain gauge 

average. CHIRPS had similar values for the January 2004, 

December 2006, and January 2011 case studies, even 

though the rain gauge values varied by 330 mm 

between these events. CHIRPS also underestimated the 

March 2004 event rainfall by 300 mm. Although, the 

rainfall anomalies in Figure 3 show above-average 

Figure 4 CORA and MSSS for December (top two rows) and March (bottom two rows) at lead times 1-4.  
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rainfall for both satellite-derived datasets. Therefore, 

while skill scores would likely differ based on 

observational dataset, the pattern is expected to be 

similar. 

The skill scores and the case studies highlight 

the difficulty in using the deterministic values directly 

for lead times 3 and 4. One reason for the difficulty 

could be calculating the anomaly using the ensemble 

mean, rather than individual ensemble members. Over 

longer lead times, the spread between ensemble 

members grows, reducing the ensemble mean anomaly. 

An improvement for extreme rainfall could be to assess 

the number of ensemble members that indicate 

extreme rainfall, rather than the average. At lead times 

3 and 4, the probability of extreme rainfall may be of 

more use than the ensemble mean. 

The presence of large-scale drivers may explain 

the good predictability for the ECMWF model for the 

chosen case studies. In each case, there was either a La 

Niña or the wet phase of the MJO. Li and Robertson 

(2015) found that the presence of MJO and ENSO may 

provide ‘windows of opportunity’ for high predictability. 

Identifying the key situations when there is better 

predictability, along with individual ensemble members, 

may be more useful than using the deterministic 

ensemble mean forecasts directly. 

Finally, while the results indicate that above-

average rainfall was forecasted for the four extreme 

hydro-meteorological events, further study is needed to 

determine the frequency of occurrence of such 

forecasts. Determining the number of false positives 

(heavy rain forecasted when none occurred) along with 

the false negatives (heavy rain occurred but was not 

forecasted), would help to more comprehensively 

determine the usability of the S2S forecasts. 

CONCLUSION 
Four extreme hydro-meteorological events 

were selected to assess subseasonal forecasts for 

southern Malay Peninsula. The case studies occurred 

during or after the Northeast Monsoon and were 

associated with cold surges. Each event was associated 

with a La Niña event or wet phase of the MJO. Forecasts 

for each case study were assessed at four lead times 

(one to four weeks) using ECMWF re-forecasts from the 

S2S Project database. CORA and MSS values were used 

to determine the overall skill for each month and lead 

time. 

Overall, the ECMWF ensemble mean predicted 

well each of the case studies at lead times of up to two 

weeks. The skill for lead times 1 and 2 was also high 

based on the CORA and MSSS skill scores for December 

and March from the re-forecasts. Therefore, these 

events suggest that S2S forecasts have the potential for 

use in early warning of extreme hydro-meteorological 

events up to two weeks for the region, which may 

provide valuable information for planning and 

activation of resources in disaster mitigation. 

The ability of the forecast to predict the case 

studies at lead times 3 and 4 depended on the event. 

The presence of either La Niña or MJO for each of the 

events possibly increased the predictability for the case 

studies. However, in the case of the January 2004 event, 

the rainfall anomaly pattern was not well predicted past 

lead time 2, possibly due to the difficultly in predicting 

cold surges. The skill based on CORA and MSSS was also 

low at lead times 3 and 4. Therefore, while there is some 

skill at lead times 3 and 4, the forecasts should not be 

used directly, but can potentially be used as a guide for 

preliminary warning through risk-based, probabilistic 

forecasts instead. 

Thus, future work should consider not only the 

ensemble mean, as assessed here, but also the 

individual forecasts and probabilistic forecast products. 

This is particularly important for lead times 3 and 4, 

where the deviation between the ensemble member 

forecasts is larger and hence the ensemble mean 

average anomalies are reduced. The individual forecasts 

collectively may better capture the probability of 

extreme rainfall at longer lead times, particularly of 

interest when considering early warning for flooding in 

the southern Malay Peninsula. 
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INTRODUCTION 
In mid-January 2018, Singapore experienced a 

prolonged period of low temperatures due to persistent 

rainfall associated with a cold surge during the 

Northeast Monsoon season. This period of low 

temperatures across the island, which lasted for about 

5 consecutive days from the 10th to 14th January, was 

unusually long. Changi Climate Station reported that the 

daily maximum temperature ranged from 23.7°C to 

26.7°C, while the daily minimum temperature ranged 

from 21.3°C to 22.8°C during this event. Both daily 

maximum and minimum temperature ranges were well 

below the past 30-year mean values for January, which 

are 30.6°C and 24.2°C respectively. 

The low temperatures together with the long 

duration attracted considerable media interest and 

became a talking point for that week, as an event of this 

magnitude had not been recorded in recent decades. 

The media reported people having to rely on wearing 

winter clothes (The Straits Times 2018a), an oddity in 

Singapore, a country well-known for its warm and 

humid climate throughout the year. Some small-scale 

annoyances on people’s daily life were also reported: 

e.g. pre-school children having to spend more time 

indoors or air coolers usually cooling in alfresco dining 

for customers set to blow warm air instead (The Straits 

Times 2018b). 

Cold spells, also known as cold waves or cold 

snaps in some regions, are known to affect many parts 

of the extra-tropical world (e.g. North America, Europe 

and East Asia) where they cause large, sharp drops in 

temperature with life-threatening consequences. While 

relatively more benign in Singapore, these cold spells, as 

the January 2018 event demonstrated, do impact 

business operations and the daily activities of 

Singaporeans. Like other cold spells around the world in 

recent times, they raise questions and misconceptions 

among the general population on the validity of the 

global warming trend due to increased greenhouse gas 

emissions. 

The long-term trend notwithstanding, cold spells 

could be caused by naturally occurring climate modes of 

variability, such as El Niño–Southern Oscillation (ENSO). 

ENSO events can have impact on the frequency of cold 

surges during the Northeast Monsoon (Wu and Leung 

2009) and it is plausible that the occurrence of 

persistent rainfall during cold surges could in turn lead 

to cold spells over Singapore.  This possible ENSO-Cold 

Spell connection is worthy of being investigated as well 

as the long-term trends.  

From a meteorological perspective, it is of 

interest to local weather forecasters to gain a better 

understanding of cold spell events and their relationship 

with large-scale cold surges during the Northeast 

Monsoon (from late November to March). While rainfall 

patterns associated with cold surges have already been 

studied by many researchers (e.g. Lim et al. 2017), to the 

best of the authors’ knowledge, there are no previous 

systematic studies on temperature patterns in 

Singapore associated with cold surges.  This study aims 

to fill the current gap. 

In this study, the historical temperature records 

from existing MSS observation stations are examined to 

identify and characterise past cold spell events in 

Singapore. In the process, two definitions of cold spells 

appropriate in the Singapore context were tested. 

Based on these definitions, a climatology of cold spell 

events is established including the length, frequency, 

and spatial variability of the events across Singapore. In 

relation to the climatology, the significance of the 

January 2018 cold spell is discussed further. 

DATA AND METHOD 
Data used to identify cold spell events in this 

study are from five manned weather stations, located in 

Changi, Paya Lebar, Seletar, Sembawang and Tengah, 

for which sufficiently long records exist (their exact 

location is documented in Figure 5). Daily maximum and 

minimum temperatures were recorded at each station, 

all currently in operation but started in different years. 

Paya Lebar has the longest records (since August 1955), 

while Sembawang is the most recent station (since April 

1986). Besides these five stations, historical data from 

Kallang (June 1934 to August 1955) were included to 
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analyse longer-term variability and trends despite the 

station being the sole measurement prior to 1955 and 

with a data gap from 1942 to 1947 owing to the 

Japanese Occupation during World War II. 

Two different criteria were tested to identify cold 

spell events: one based on daily maximum temperature 

(Tmax) only and the other based on the average 

between daily minimum (Tmin) and maximum 

temperature (Tavg = [Tmax+Tmin]/2). The motivation to 

use both criteria is that it is unclear, between minimum 

and maximum temperature variables, which will impact 

the general population more.  

In addition, the severity of the events was tested 

using two thresholds to differentiate ‘cool spell’ and 

‘cold spell’ events, the former being less severe. A cool 

spell event is recorded when either the daily Tmax is 

below 27°C or daily Tavg is below 25°C and the event 

persists for at least 2 consecutive days. Similarly, a cold 

spell event is recorded when either the daily Tmax is 

below 26°C or the daily Tavg is below 24°C. The cool 

spell thresholds represent the lowest 2.5% of the 

temperature records at all stations and the cold spell 

thresholds represent the lowest 1%. In Europe, the 

Copernicus European Drought Observatory (EDO) uses 

the 10th percentile daily threshold for both Tmax and 

Tmin for their definition of extreme low temperature 

cold waves (EDO 2018). The Japan Meteorological 

Agency on the other hand monitors the weekly mean 

temperature anomaly and checks if it exceeds 3 times 

the 30-day standard deviation (WMO 2018). There are 

no unique criteria or thresholds for cold spell/cold 

wave, and different countries located in different 

geographical regions tend to have their own criteria and 

thresholds to suit their own local requirements. In this 

study, we have chosen a far more stringent threshold to 

recognise the fact that, due to the tropical climate of 

Singapore, only the most severe of events are expected 

to impact the daily activities of the general public. This 

was a subjective choice based on the public perception 

that emerged during the January 2018 cold spell event 

and a starting point to be analysed in this paper. 

Two data issues needed to be addressed before 

applying these criteria: 1) biases due to shifts in the 

locations of temperature sensors and 2) missing data. 

According to the available metadata, three 

weather stations (Paya Lebar, Seletar, and Tengah), 

shifted the location of their temperature sensors. Paya 

Lebar’s temperature sensor was shifted to a rooftop on 

the 19th August 1981, Seletar’s sensor was also moved 

to the rooftop on the 14th November 2011, while 

Tengah’s sensor was elevated to a higher ground from 

7.6 m to 16.8 m in June 1986. In order to evaluate if 

there were significant impacts due to these shifts, the 

daily minimum (or maximum) temperature records 

were first averaged into yearly data and grouped into 

pairs of 5-year intervals for comparison prior to and 

after the documented change in the instrumentation’s 

location.  

For example, the Seletar station was relocated in 

2011, therefore the differences compared are between 

the mean for 5-year intervals before (2006–2010) and 

after (2012–2016) the shift. This difference is then 

compared against the median of the distribution of all 

the differences computed from all adjacent pairs of 5-

year intervals in Seletar’s entire record, excluding 

intervals containing the year of the shift, thus providing 

an estimate of the distribution of plausible shifts 

between 5-year periods in the full record. The result for 

the impact of the location shift on Seletar’s daily 

minimum temperature is shown in Figure 1. 

 

 
In the case of Seletar’s daily minimum record 

(Figure 1), the shift due to the change of location 

resulted in a large increase in the temperature 

(indicated by the position of the vertical red line) far 

larger than the median (dashed black line) estimated 

from all possible 5-year periods and larger than all other 

5-year differences; thus indicating that the shift is 

significant compared to random differences between 5-

Figure 1 Distribution of the difference in the mean daily 
Tmin at Seletar station of adjacent non-overlapping 5- 
year intervals. The dashed vertical line represents the 
median (0.17) of the distribution. The red vertical line 
(0.74) represent the increase in temperature after the 
shift.  The difference between the two values (0.58) is 
used to correct the observations post 2011 to account 
for the effect of the shift in instrumentation over time. 



Issue #2 MSS Research Letters Page 28 
 

year periods. The shift in the time series was corrected 

by removing from all daily minimum temperature 

recorded after 2011 0.58°C, the difference between the 

shift when the instrument was moved and the median 

of all other 5-year shifts.  

The same procedure was applied to Paya Lebar 

and Tengah’s dataset for both minimum and maximum 

time series. With this method, it was found that shift of 

sensor locations had significant impact on Seletar’s 

minimum and maximum temperature and Tengah’s 

minimum temperature. Temperature time series were 

corrected accordingly and in the case of Seletar, data 

after the shift was corrected as the roof top location is 

less suitable than the earlier ground location, but in the 

case of Tengah, where both locations are suitable being 

at ground level, the correction was applied to the earlier 

part of the record in order to align with on-going 

measurements (Table 1).  

Another issue with the datasets is that there 

were no observations at Sembawang manned station 

during the weekend starting from September 2017 

onwards. This issue was remedied by comparing 

observations from other stations. If at least 3 stations 

recorded a cool/cold spell event, it was assumed that 

Sembawang would have also recorded the event.  

 In addition to Singapore’s temperature 

observations, this study makes use of a classification of 

ENSO events and years using the detrended (removal of 

the background tropical warming signal) Nino3.4 Sea 

Surface Temperature index (Turkington et al. 2018). 

ENSO year (from June to May) are classified in one of 

the three states: El Niño, La Niña or Neutral.  This 

classification was used to find out if cool spells in 

Singapore tend to favour certain ENSO states.  

The region’s climate is influenced by drivers at 

various spatial scales. Large-scale atmospheric drivers 

include ENSO and the Indian Ocean Dipole. The 

Madden-Julian Oscillation (MJO), one of the main 

subseasonal drivers globally, tends to bring more 

rainfall during Phases 2–4 and drier conditions during 

Phases 6–8 for the region (Xavier et al. 2014). During the 

Northeast Monsoon, strong winds over the South China 

Sea associated with southward intrusions of the 

Siberian high bring increased convection over the 

Maritime Continent, termed cold surges (Lim et al. 

2017). When cold surges and the MJO occur at the same 

time, the rainfall pattern tends to more closely 

resemble a cold surge, with the MJO increasing the 

extreme rainfall response in the region in Phases 2–4 

(Lim et al. 2017). 

RESULTS AND DISCUSSION 
The number of cool and cold spell events 

observed at the five stations since 1971 are summarised 

based on the Tmax and Tavg criteria (Figure 2). Up to 

five cool spells have been observed in one year (1973 in 

Paya Lebar based on the Tavg criteria) but usually there 

are no more than two cold spells (in several locations 

and years). Overall, the distribution of cool and cold 

spells is broadly similar between the two different 

criteria (Tmax and Tavg) indicating that both criteria are 

acceptable and can be chosen depending on what 

impact is to be considered. Some differences exist but 

for brevity, we focus the discussion on the climatology 

based on the Tmax criterion. 

Singapore experienced a larger number of cool 

and cold spell events back in the 1980s to the mid-1990s 

(Figure 2); prior to this in the 1970s, less events are 

apparent although it is difficult to be definitive as less 

stations were in operation. After the mid-1990s, 

widespread (observed at all five stations) cool and cold 

spell events became relatively infrequent. Such 

widespread events occurred only three times: in 1995, 

2011, and 2018. Cool spells in Singapore are 

predominantly nationwide phenomena and localised 

cool spells are much less common. From January 1987 

to April 2018, when all five stations are in operation, 

almost three-quarters (73%) of all cool spell events were 

simultaneously observed by at least three out of the five 

stations. 

Station 
 

Bias 
Measurement 

Location 
Shift’s Year 

Note 
Correction 

(°C) 
Applied Correction 

Seletar Daily Tmax 2011 Change to rooftop after 
2011 

0.69 Records after 2011 were 
corrected downwards  Seletar Daily Tmin 2011 0.58 

Tengah Daily Tmin 
1983 

Elevation raised from 7.6m 
to 16.8m on higher ground 

-0.40 
Records before 1986 

were corrected 
downwards 

Table 1 Summary of the corrections applied to remove changes in temperature measurements at Seletar and 
Tengah station due to sensor location shifts. 
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The length of a cool spell event can range from 2 

to 6 consecutive days and a cold spell event can last 

from 2 to 4 consecutive days depending the criteria 

used (Figure 3 for Paya Lebar, the longest record 

available). Paya Lebar is representative of other 

locations as well since cool and cold spells affect many 

stations simultaneously. The bulk of the cool and cold 

spell events occurred during the Northeast Monsoon 

months and longer lasting events (4 to 6 consecutive 

days) are only observed in December and January, thus 

confirming the role of cold surges during the Northeast 

Monsoon in bringing anomalous cooler and wetter 

weather. Rare instances of cool spells did occur during 

the Southwest monsoon (July to September), although 

they were shorter (never exceeding 3 days) and never 

reached cold spell thresholds. Anecdotal evidence of 

the strong association of cold/cool spell with rainy 

weather in Singapore can be seen from the case of Paya 

Lebar station where for the past 20 cold spell events 

from 1955–2018, long duration rainfall was observed 

Figure 2 Distribution of the number of cool (left column) and cold (right column) spell events from 1971 to 2018 
(up to April) for the five manned stations in Singapore, based on daily Tmax criteria (a) and on daily Tavg = 
[Tmax + Tmin]/2 criteria (b). Greyed out cells indicate that the particular station was not in operation. 
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during every single cold spell event. The observed total 

rainfall duration lasted from 19 hr to 57 ht throughout 

each cold spell event (2 to 4 days long). 

Long-term trends and inter-annual variability are 

evaluated on an extended record from 1934 to present 

by combining Kallang’s historical observations from 

1934 to 1955 with Paya Lebar record from 1955 to 

current (Figure 4).  Since 1995, cool spells have become 

rare in Singapore, although from 1934 to the early 

1990s, there was no apparent trend. It is worth noting 

that in the meantime, Singapore went through a rapid 

warming trend from the 1970s to the mid-1990s of 

about 1.5°C, which is likely due to a combination of the 

on-going global warming trend and urbanisation (MSS  

2016). From Paya Lebar’s record, the number of cool 

days decreased from 9.0 to 5.4 days per year between 

1959-1988 and 1989-2018. In the meantime, alongside 

the reduction in the number of days, a smaller 

proportion are observed as part of spells: from 31% to 

26%. A similar reduction in total number of days and 

proportion of day forming parts of spells are observed 

for the cold threshold: from 3.6 to 2.3 days per year and 

from 27% to 19% of days being part of spells. As these 

days with the lowest temperatures are becoming rarer, 

they are less likely to extend spells of any duration. No 

significant relationship was found between the main 

mode of natural variability affecting the Western 

Maritime Continent and Singapore (ENSO) and the 

occurrences of cool/cold spells (Figure 4); a simple 

binning of cool spell days within each ENSO category 

revealed no meaningful or consistent differences 

between El Niño, Neutral, or La Niña years. Although, it 

is worth noting that no cool spells occurred during El 

Niño years after 1995. This may be related to the lack of 

long enough cold surges that occurred during those El 

Niño years (Lim et al.  2017). A deeper understanding of 

these factors however requires a separate study and is 

not addressed in this current work. 

With this long-term climatological perspective, 

the January 2018 cold spell appears as an extremely 

Figure 3 Annual distribution of cool (left) and cold (right) spell events and their durations (number of 
consecutive days) at Paya Lebar station (1955 to 2018) using different criteria: Tmax (top row: a and b) and 
Tavg = [Tmax + Tmin]/2 (bottom row: c and d).  Events with longer durations are excluded from the shorter 
duration events thus avoiding double-counting. 

Figure 4 Annual count (the definition of the year is based on the ENSO cycle and are from June to May) of 
cool spell days (based on the Tmax criteria and at least two consecutive days for the days to be counted) 
from 1934 to 2017; data are from Kallang station from 1934 to 1954 (with a gap from 1941 to 1946) and from 
Paya Lebar after 1955. ENSO years (El Niño, Neutral and La Niña) are indicated by colour code and available 
from 1961 onward (from Turkington et al. 2018). 
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severe case when considering the various aspects (total 

duration, temperature, and spatial extent) together. 

Singapore had not experienced a similar case in the past 

two decades. As a cold spell (daily Tmax < 26°C), the 

2018 event lasted for 4 days, or as a cool spell (daily 

Tmax < 27°C) the event lasted for 5 days, making the 

event unusually long and widespread in the historical 

context (Figure 5). When the cool threshold is used, the 

event was record-breaking in duration for Sembawang 

(5 days) and equal the previous record for Tengah, 

Changi, and Seletar (at either 4 or 5 days). In the context 

of the on-going warming trend, it was even more 

remarkable when the cold threshold is used: either 

record-breaking or equal the longest at 4 stations 

(Changi, Seletar, Tengah, and Sembawang). In summary, 

the combination of the magnitude of the temperature 

anomalies, the duration of the spell, and widespread 

nature of the January 2018 event made the event quite 

remarkable. Even more so after nearly two decades of 

no similar events. 

CONCLUSION 
Cool/cold spells, based on the definitions 

chosen in this study, are quite rare in Singapore. In any 

given year, there are usually no more than 1 or 2 events 

and up to 3 or 5 events for a few exceptional years all 

before 1995. In most years, there are no such events. 

Cold spells are predominantly widespread and can be 

regarded as nationwide phenomena. Cool spells can last 

from 2 to 6 consecutive days, while cold spells can last 

from 2 to 4 days. Both occur mostly during the 

Northeast Monsoon (late November to March) and are 

likely associated with prolonged rainfall during cold 

surges. Some cool spells do occur during the Southwest 

Monsoon but are extremely rare and do not last for 

more than 3 days; no cold spells have ever occurred 

during the Southwest Monsoon. Of note, there seems 

to be no particular prevalence for cold spell events in 

relation to ENSO variability. 

In the historical context, the January 2018 cold 

spell is indeed remarkable in consideration of its 

duration, temperature, and widespread nature; no 

similar events had been seen since the early 1990s. 

During the 1980s to the mid-1990s, there were 

generally more cool and cold spell events than during 

any other period, but they became relatively infrequent 

following a period of rapid warming recorded across the 

MSS network of manned temperature stations from the 

1970s to the mid-1990s. Therefore, it is not surprising 

that the 2018 event made so many local newspaper 

headlines and that many Singaporeans reacted to it.  

This simple climatological analysis provided a 

basis for understanding these meteorological events 

Figure 5 The January 2018 cold spell event as observed at the five stations in Singapore. The number of cool/cold 
spell events observed at for various durations is shown for comparison. The duration of the longest cold spell event 
together with the year of occurrence is also indicated at each station. The duration of the January 2018 cold spell 
event broke the records at three stations (Changi, Seletar, and Tengah).   
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and future work of interest could improve our 

understanding of that climatology in relation to large-

scale meteorological events (the propagation of MJO 

events, Northeast Monsoon cold surges, wet spells 

etc.). It would also be valuable to study the potential 

impact of future projected warming in Singapore on the 

observation of future cold spells. Analysis of the 

Singapore 2nd National Climate Change Study (Gordon 

et al. 2015) indicated that the Northeast monsoon cold 

surges may increase in intensity (Marzin and Lim 

personal communication); therefore, it opens up the 

possibility that despite global warming combined with 

localised urbanisation related warming, Singapore may 

continue to experience rare cold spells in the future. 
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INTRODUCTION 
Precipitation is one of the most significant 

meteorological phenomena that impacts our daily lives 

and is notoriously difficult to predict, due to its high 

variability in space and time. Precipitation patterns 

range from isolated convective thunderstorms that last 

only a few minutes, to large synoptic-scale systems that 

last for days. While the characteristics of the latter 

makes it easier to resolve within Numerical Weather 

Prediction (NWP) models, the dynamical processes of 

thunderstorms prove to be a greater challenge. 

However, it is possible to forecast such localised 

thunderstorms with reasonable accuracies at very short 

lead times. 

According to the World Meteorological 

Organization, the term nowcasting refers to the current 

weather situation and the forecast of those observed 

conditions, typically between a 0- and 2-hour lead 

times. Nowcasting has always been a challenge for the 

NWP community. One reason is the model’s inability to 

accurately represent the state of the atmosphere due to 

the lack of, as well as errors in atmospheric 

observations. Another reason is that the tolerance for 

location and timing errors with forecasted precipitation 

is very low. Furthermore, nowcasting applied to 

precipitation usually has a high spatial resolution with a 

high expectation of the location and timing accuracy of 

the forecast, which is a great challenge to NWP models. 

Nowcasting clearly requires a different approach to be 

of value (Sun et al. 2014). 

Since the 1960s, a number of nowcasting 

systems that rely on radar observations have been 

developed, with two main strategies used: qualitative 

cell/object-based tracking systems (Dixon and Wiener 

1993) and quantitative grid-based tracking systems (Li 

and Lai 2004). A comprehensive review of operational 

nowcasting systems is covered in Reyniers (2008). Both 

cases are based on extrapolation of precipitation in time 

and space using available information. However, 

localised thunderstorms in tropical areas that are of 

short life cycle tend to grow and decay rapidly,which 

greatly limits the predictability from extrapolation-

based nowcasting.  

Thunderstorms frequently occur in Singapore all 

year round induced mainly by diurnal forcing from 

radiation and surface heat fluxes (Qian 2008). In 

Singapore, nearly every other day is a thunderstorm day 

(a day in which thunder is heard; Fong 2012). Many 

hazardous phenomena associated with thunderstorms 

such as flash floods, microbursts, lightning, and 

hailstorms make heavy rain warning a high priority in 

MSS. A nowcasting system is helpful to assist forecasters 

in issuing heavy rain warnings. The development of the 

nowcasting system kicked off in mid-2016 and by Mar 

2017 the first working version was released. From Apr 

2017 onwards efforts were put into fine tuning the 

system, making it robust to run in real-time. The 

following sections contain the methodology followed by 

system configuration and the results and discussion. 

DATA AND METHOD 
The Artificial Neural Network (ANN; McCulloch 

and Pitts 1943) was employed in modelling the 

nowcasting system considering its strength in 

addressing nonlinearity of a problem. Through the ANN, 

a model is trained by fitting time series of radar 

reflectivity to the one that immediately follows. Upon 

completion of the training, the model is ready to 

perform prediction by taking in the latest radar 

reflectivity to produce a series of future forecasts in an 

iterative manner: the newly produced reflectivity will be 

used to update the input to perform the prediction 

again and again until the desired forecast length is 

reached. The system was written in Python and the ANN 

modelling part is built based on the ‘Scikit-learn’ Python 

module (Pedregosa et al. 2011). The key parameters of 

the ANN modelling, such as number of hidden layers, 

training data time window, and forecast length, were 

determined via experimenting different values in order 

to find an optimised balance among fitness, 
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computation cost and feasibility for real-time usage. In 

the current configuration, 25 hidden layers, a training 

time window of 50 minutes, and the forecast length of 

one hour are being used. In the rest of the paper, the 

nowcasting system is referred to as the ANN-NCST, 

short for ANN-based NowCaSTing system. 

The radar data used in the ANN-NCST are level 

two volume scan data of calibrated reflectivity from the 

operational dual-pol Doppler Weather Radar of MSS at 

Changi (Figure 1, star). The dual-pol echo type products 

are also used for quality control purpose. The radar data 

pre-processing includes re-gridding, removal of echoes 

from ground clutter and insects, and removal of isolated 

cells and other small values. 

 

 
The simulation domain of the ANN-NCST is 

illustrated in Figure 1 and the resolution is 2.0 km. At 

such a resolution, the Singapore domain (blue box in Fig. 

1) with a dimension of 55×30 km2 contains 348 (28×16) 

native resolution grid points. The ANN-NCST is 

scheduled to run twice per hour starting at 10 minutes 

after T0 (time = 0) due to the usual 6-minute delay of 

real-time radar observation. Given that the ANN-NCST 

needs another 5-9 minutes to complete the prediction 

and product uploading, the effective forecasts are from 

T+15 min and beyond for forecasters to reference in an 

operational setting.  

A verification period of six months from 10 

November 2017 to 9 May 2018 was chosen for two 

reasons. Firstly, the data quality and consistency are 

ideal in this period where the system configuration is 

frozen and the ANN-NCST was run twice per hour during 

this period. Secondly, the period covers two different 

seasons, the Northeast Monsoon (December to early 

March) and the first inter-monsoon season (late March 

till May), which provides opportunity to investigate 

system performances in two different types of seasons. 

In the Northeast Monsoon, rainfall caused by large-scale 

cold air invasions from South China Sea (cold surges) 

contributes as much rainfall over Singapore as localised 

thunderstorms. While rainfall associated with cold 

surges cannot be considered from just a large-scale 

perspective due to the interaction between mesoscale 

and local terrain features (Chang et al. 2016), the strong 

northeast wind helps the ANN-NCST to have more 

predictability in this season. Whereas during the inter-

monsoon season, when environment wind is weak, 

localised and short-lived thunderstorms are dominant 

and are less predictable. The evaluation was carried out 

over two 3-month periods, months of (November to 

January (NDJ; large-scale rainfall dominant) and 

February to March (FMA; convective rainfall dominant), 

to increase the number of cases for verification. 

Several verification domains illustrated in Figure 

1 were used, including the entire simulation domain and 

much smaller ones over Singapore Island, which were 

defined from forecaster’s perspective. Over the entire 

simulation domain, histograms and the Fractions Skill 

Score (FSS; Roberts and Lean 2008) were examined. A 

histogram provides intuitive overview on forecast bias 

across different thresholds whereas FSS is a good 

measure for spatial accuracy of precipitation forecasts 

(Mittermaier and Roberts 2010), as well as a better 

candidate to demonstrate benefits of kilometre-scale 

forecast of precipitation over traditional methods 

(Mittermaier 2014). Following Roberts and Lean’s 2008 

paper, a simplified calculation of FSS is given by Eq. (1), 

corresponding to the length scale of 2n km (as the 

resolution is 2 km and where n is the number of grid 

boxes at the particular length scale). 

𝐹𝑆𝑆 = 1 −
1

𝑁
∑(𝑓𝑚−𝑓𝑜)

2

1

𝑁
∑𝑓𝑚

2+
1

𝑁
∑𝑓𝑜

2                      (1) 

where N is the total number of valid grid points in the 

domain; fm is the forecasted rain cover fraction (Eq. 2) 

and fo (Eq. 3) is observed rain cover fraction. Both 

fractions are defined with respect to the box spanned 

by n×n native grid points.   

𝑓𝑚 =
𝑛𝑚

𝑛2
                   (2) 

𝑓𝑜 =
𝑛𝑜

𝑛2
              (3)  

Figure 1 Various domains used, including the ANN-NCST 
simulation domain (the entire map), the five smaller 
regions over Singapore for verification only: Singapore 
(blue box), West (leftmost red box), Central-South 
(bottom middle red box), Central-Central (centre red 
box), Central-North (top middle red box) and East 
(rightmost red box); the star marks the location of the 
Changi radar. 
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Several length scales were used in this study. 

They were selected such that the area of the square 

doubles each time length scale increases. The smallest 

length scale is 2 km, the native resolution, and the 

largest one is 270 km when FSS tends asymptotically to 

a value that is solely determined by bias (Eq. 7; Roberts 

and Lean 2008). The length scales in between are 

respectively 6 km, 10 km, 14 km, 22 km, 30 km, 46 km, 

66 km, 94 km, 134 km, and 190 km. 

Since FSS is calculated for categorical (yes/no) 

events, a threshold has to be determined. A set of 

reflectivity thresholds from low to high are selected 

based on hourly rain rates of our interest. The mapping 

from reflectivity to rain rate follows the study by Kumar 

et al. 2011 who proposed a relationship between radar 

reflectivity factor Z (mm-6m-3) and rain rate R (mm/h) by 

analysing drop size distribution data of convective 

rainfall over Singapore (Eq. 4). 

𝑍 = 328.64𝑅1.29             (4) 

Ten thresholds have been considered: 0.1, 1.0, 

2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 70.0, and 100 mm/h. 50 

mm/h was included because it is the heavy rain warning 

issuance criteria for MSS forecasters. Six other 

thresholds below 50 mm/h are chosen such that the 

exceeding probability decreases at about 10% intervals, 

based on a study of Singapore rainfall intensity 

distribution (Mandapaka and Qin 2013). A small value of 

0.1 mm/h is set to differentiate yes/no rain events. 

100 mm/h is chosen as the highest threshold as the 

exceeding probability is less than 0.01% and 70 mm/h is 

then determined as the logarithmic middle point 

between 50 mm/h and 100 mm/h. The same set of 

thresholds are used to bin the intensities to produce the 

histogram (Figure 2). 

 

Table 1 Contingency table for calculating POD, SR, Bias, 

and CSI. 

  Observed 

  Yes No 

Forecasted Yes a b 

No c d 

 

For smaller domains, FSS is not recommended 

as the domain dimension is closer to spatial error of 

forecasts (Skok and Roberts 2016). Metrics including 

Probability of Detection (POD; Eq. 5), Success Ratio (SR; 

Eq. 6), Bias (Eq. 7), Critical Success Index (CSI; Eq. 8) 

score and Critical Success Index Skill score (CSIskill; Eq. 9) 

were investigated instead, all of which are derived from 

the contingency table (Table 1). All these metrics are 

commonly used to assess the operational usefulness of 

the forecasts. 

𝑃𝑂𝐷 =
𝑎

𝑎+𝑐
           (5)  

𝑆𝑅 =
𝑎

𝑎+𝑏
                       (6) 

𝐵𝑖𝑎𝑠 =
𝑎+𝑏

𝑎+𝑐
                             (7) 

𝐶𝑆𝐼 =
𝑎

𝑎+𝑏+𝑐
                             (8) 

𝐶𝑆𝐼𝑠𝑘𝑖𝑙𝑙 =
𝐶𝑆𝐼−𝐶𝑆𝐼𝑟𝑒𝑓

1−𝐶𝑆𝐼𝑟𝑒𝑓
                  (9) 

where CSIref (Eq. 10) is derived using base frequency fb, 

i.e. the fraction of observed rain cover. 

𝐶𝑆𝐼𝑟𝑒𝑓 =
𝑓𝑏

1−𝑓𝑏
                 (9) 

RESULTS AND DISCUSSION 
Figure 2 shows the histograms of frequencies of 

different rain intensities from radar observations and 

forecasts of T+30 min and T+60 min over the entire 

simulation domain for the two seasons. The histograms 

a) b) 

Figure 2 Histogram of frequencies of different rain intensities from radar observation (black) and forecasts of T+30 
min (cyan) and T+60 min (purple) over different months for months of (a) NDJ and of (b) FMA. 
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indicate that the frequency distribution of intensities of 

T+30 min forecasts (cyan bars) is in good agreement 

with the observed (black bars) and so does that of T+60 

min (purple bars) except slightly larger deviations from 

the observed than T+30 min forecasts. In general, the 

ANN-NCST does a good job in representing the intensity 

distribution across all thresholds up to the lead time of 

T+60 min. The wet-bias for the lightest rainfall (<1 

mm/h) and the dry-bias in slightly heavier rainfall is 

found in both seasons, which indicates that the ANN-

NCST cannot maintain the intensity structure over time, 

or more light rainfall forecasted that is supposed to be 

heavier. This over-forecasting of light rainfall is more 

evident in FMA season than in NDJ season, potentially 

due to the shorter life time of light rainfall in FMA 

season. While at the intense rainfall end, the ANN-NCST 

tends to maintain intense rainfall longer than observed, 

and we speculate this is most likely related to the partial 

fitting scheme of the training. More experiments are 

needed to look into this issue as it will lead to higher 

false alarm ratios.  

Figure 3 plots FSS against different length scales, 

or different neighbourhood allowances for location 

error. Only plots of T+10 min and T+60 min are shown. 

From Figure 3, generally, FSS decreases over lead time 

and in most cases decreases as threshold increases. 

There are five exceptions out of the 120 cases that do 

not follow this rule. For example, in Figure 3a where FSS 

for threshold ≥ 70 mm/h and ≥ 100 mm/h are not always 

lower than lighter rain events. We believe this is 

because of the smaller sample size as all these five cases 

are of the highest two rain rates (70 mm/h and 100 

mm/h). 

When comparing the results for the two 

different seasons (left column vs right column, Figure 3), 

the NDJ season’s forecast skill for heavier rainfall 

(threshold > 5 mm/h) drops much faster than in the 

FMA season over time. We speculate this performance 

difference is because there are more large-scale 

precipitation events in the NDJ season, featured by 

broader rain area, than in the FMA season where locally 

developed convections dominate with constrained rain 

areas. Thus, the higher intensity rainfall in NDJ accounts 

for a relatively smaller portion of total rain area. As a 

result, it is more difficult to capture the pattern of 

higher intensity rainfall in NDJ and hence the lower 

scores. 

 

 Figure 3 FSS of (a) NDJ T+10 min, (b) FMA T+10 min, (c) NDJ T+60 min and (d) FMA T+60 min. 

a) NDJ 

T+10min 

b) FMA 

T+10min 

d) FMA 

T+60min 

c) NDJ 

T+60min 
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In order to assess how the forecast usefulness 

depends on the spatial sale of the phenomena, two 

reference lines are used in Figure 3: the FSS of 0.5 and 

the length scale of 46 km. In most situations FSS of 0.5 

can be a good indicator of useful forecasts (Skok and 

Roberts 2016). The length scale of 46 km is chosen as it 

is the closest to the spatial scale that MSS forecasters 

use for evaluating heavy rain warnings; forecasters 

consider a heavy rainfall warning as accurate when any 

rain gauge has recorded heavy rain event island wide (~ 

45 km). Therefore, in the context of one-hour 

nowcasting, a useful forecast is considered as those 

with FSS≥ 0.5, a length scale ≤ 46 km and a lead time ≥ 

15 min. 

 

 

Using the definition of a useful forecast above, 

Table 2 lists all the useful forecasts that the ANN-NCST 

can provide. Table 2 shows that for forecasts of heavy 

rain events (threshold ≥ 50 mm/h) the ANN-NCST can 

hardly provide any useful references for forecasters.  

Figure 4 shows how FSS drops over lead time for 

various thresholds. It can be found that at small 

thresholds from 0.1 mm/h to 2 mm/h, FSS scores in NDJ 

(blue curve) is higher than FMA (red curve) but the other 

way around when threshold increases above 5 mm/h, 

and becomes comparable when the threshold reaches 

70 mm/h. As there are more occurrences of rain events 

with larger coverage in NDJ than in FMA, a better 

predictability is expected for lighter rainfall due to larger 

Season T+10m T+20m T+30m T+40m T+50m T+60m 

NDJ 0.1/1/2/5/10/20
/30 

0.1/1/2/5/10/20 0.1/1/2/5/10 0.1/1/2/5 0.1/1/2 0.1/1/2 

FMA 0.1/1/2/5/10/20
/30/50/70 

0.1/1/2/5/10/20
/30 

0.1/1/2/5/10 0.1/1/2/5 0.1/1/2 0.1/1/2 

Table 2 Thresholds (mm/h) of events with useful forecasts from ANN-NCST, based on seasons and lead times. 

Figure 4 FSS versus lead time for length scale of 46 km for different thresholds 0.1 mm/h (a), 2 mm/h (b), 5 
mm/h (c) and 30 mm/h (d). 

a) NDJ 

T+10min 

b) FMA 

T+10min 

d) FMA 

T+60min 

c) NDJ 

T+60min 

a) b) 

c) d) 
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coverage but not for heavier rainfall because of its 

relatively smaller fraction of total rain area in the NDJ 

season than in the FMA season. 

For smaller domain (red and blue boxes in Figure 

1) verification, scores based on contingency tables are 

investigated. The contingency tables are firstly derived 

based on Table 1 for each domain, where a ‘Yes’ event 

is defined when any grid point within the domain has a 

value equal to or greater than a chosen threshold, and 

a ‘No’ event is when all grid point values are less than a 

threshold. POD, SR, Bias, and CSI can subsequently be 

calculated and plotted using performance diagram as in 

Figure 5. Only events of ≥ 0.1 mm/h and ≥ 50 mm/h with 

the lead time of T+30 min (cyan boxes) and T+60 min 

(purple boxes) are plotted considering that 50 mm/h is 

the threshold for operational heavy rain warning and 

the scores for ≥ 0.1 mm/h basically provide the scores 

for rainfall locations detection only regardless of 

intensity. 

In the performance diagram, the location of the 

box shows how good a forecast is in terms of POD, SR, 

Bias, and CSI. The dotted coordinate lines are metrics 

for Bias indicating under-forecast bias (below the 

diagonal line) or over-forecast bias (above the diagonal 

line); curved coordinate lines are CSI metrics where the 

upper-right corner is the best (CSI=1) and the lower-left 

corner is the worst. 

As the Singapore domain and the West domain 

are the largest two domains, the scores over these two 

are the highest due to a larger neighbourhood 

allowance for location errors and the forecasts are also 

a) b) 

c) d) 

Figure 5 Performance diagram for different threshold and verification domains: (a) West domain with threshold ≥ 
0.1 mm/h, (b) West domain with threshold ≥ 50 mm/h, (c) Singapore domain with threshold ≥ 0.1 mm/h and (d) 
Singapore domain with ≥ 50 mm/h. The curved lines indicate the CSI, while the dotted lines indicate the Bias. 
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the least biased compared those over the other four 

smaller domains (plots not shown). 

From panel (d) of Figure 5 we can see that the CSI 

scores are not very high (between 0.2-0.3), but the 

forecasts have skill when compared to a reference CSI 

derived from observed base frequency (CSIref). CSIskill can 

thus be calculated (Eq. 9) where positive CSIskill indicates 

that there is some skill over CSIref and negative value 

means there is not. For simplicity, only results for 

forecasts of T+30 min and T+60 min are shown in Table 

4 by printing out the maximum threshold for positive 

CSIskill (thus the higher the better) with respect to lead 

time and domain. Table 4 shows that in general, the 

ANN-NCST has better performance in the NDJ season 

than in the FMA season for all the small domains and 

lead times. 

 

Table 4. Maximum threshold (mm/h) of positive CSI 

skill scores with respect to lead time, domain for 

different seasons. 

 

Table 4 shows that there is no negative CSIskill 

over the Singapore domain or West domain for all 

thresholds and lead times for the two seasons, 

suggesting the ANN-NCST can have added value over 

forecasts purely based on climatology for intensive 

rainfall up to 100 mm/h over a sub-region of Singapore 

when the spatial scale is no smaller than 20×20 km2, or 

half the spatial scale of Singapore Island. 

CONCLUSION 
A nowcasting system based on ANN developed 

in MSS has been running in real-time since April 2017. 

The ANN-NCST includes two main steps: firstly, the 

model is trained online on past cases, and then, once 

trained, it provides future one-hour reflectivity 

forecasts at a resolution of 2 km over a 187×154 km2 

domain. The forecasts with lead times from T+15 min to 

T+60 min can be used to support forecasters. Two 3-

month period of simulations are evaluated using 

metrics including Bias, FSS, and CSI. 

Results indicate that the ANN-NCST is able to 

provide realistic forecasts of radar reflectivity with 

relatively small biases in terms of probability 

distribution. Considering the verification over the entire 

domain (187×154 km2), the ANN-NCST forecasts have 

been shown to be useful (a forecast has been judged 

useful if FSS≥ 0.5) for light rain events with threshold 

less than 5 mm/h. For precipitation intensities higher 

than 5 mm/h, a poorer performance is observed in the 

NDJ season than in the FMA season. We suppose this is 

related to the fitting algorithm implemented in the 

training module and it is worth more investigation and 

can be improved in the future. Over verification 

domains smaller than 46×46 km2, scores based on the 

contingency table show that the ANN-NCST 

demonstrates the capability to outperform climatology 

for heavy rain events over a domain with dimensions up 

to 20×20 km2, but the usefulness of this product to 

operations has not been investigated.  

In the future, the plan is to test the use of ANN-

NCST forecasts to assist heavy rain warnings in a 

relatively small domain of Singapore Island and the 

immediate vicinity. 
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GLOSSARY 
 

Automatic weather stations (AWS): Weather stations that collects, stores, and transmits automatically various weather 

information (e.g. rainfall, temperature).  

Artificial Neural Network: A computer system framework with a number of nodes or ‘neurons’, potentially with many 

layers of nodes, that alter the input data to produce output data. 

ANN-based Nowcasting system (ANN-NCST): The nowcasting system developed at MSS, based on artificial neural 

network using radar reflectivity.  

Bias (based on the contingency table): compares the number of forecasted events with the number of observed events. 

Boreal: Refers to the north, often used to refer to the Northern Hemisphere. 

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS): near-global gridded rainfall dataset developed by 

the US Geological Survey and the University of California, Santa Barbara. 

Coefficient of correlation (r): The strength of a linear relationship between two variables (if plotted on a graph, how 

closely the points fit to a straight line).  

Cold surges: strong northeast winds over the South China Sea that bring increased convection over the Maritime 

Continent, usually occurring during the Northeast Monsoon.  

Cold spell: A period of abnormally cold temperatures relative to the normal temperature for the region.  

Contingency table: A table that summarises the distribution of two variables, in this case the forecast and observed 

conditions, and is used to study the correlation between these variables. Various metrics include Bias, CSI, POD, SR. 

Cool spell: A period of abnormally cooler temperatures for the region (but not as cold as cold spell).  

Correlation of anomalies (CORA): A measure of the linear association between predicted and observed anomalies, also 

termed ‘anomaly correlation coefficient’. Similar to r, but when the variables are specifically anomalies and generally 

applied to a spatial field.   

Critical Success Index (CSI): Similar to POD, although it also considers the number of false alarms (there by penalising 

for both false alarms and missed events).  

Decadal variability: Variations in the climate that occur on the time scale of 10 to 30 years.   

European Centre for Medium-range Weather Forecasts (ECMWF): A research institute and operational service 

dedicated to improve forecasts in the 7 to 15-day window that provides additional forecasts, including those at the 

subseasonal to seasonal timescale.  

El Niño–Southern Oscillation (ENSO): Irregular variations in the winds and sea surface temperatures over the tropical 

Pacific Ocean (variations in the Walker Circulation). The pattern oscillates between neutral, El Niño, and La Niña with 

no regular pattern. 

Fractions Skill Score (FSS): Used to verify forecasts over an area. Dividing the study area into a grid, the FSS compares 

the number of positive forecasts in a region (or ‘neighbourhood’) around each grid box with how many positive events 

were observed in that same region. Positive forecasts/events are often grid boxes with rainfall above a certain threshold. 

Indian Ocean Dipole (IOD): The difference in sea surface temperature between the western Indian Ocean (Arabian Sea) 

and the eastern Indian Ocean (south of Indonesia), which oscillates irregularly. 
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Inter-monsoon (IM): The transitional periods between the monsoons seasons: Northeast and Southwest. 

Intertropical Convergence Zone (ITCZ): A belt of low pressure near the equator where the trade winds from the Northern 

and Southern hemispheres meet, generally marked by intense convection and rainfall.  

Inverse Distance Weighting (IDW): An interpolation method, where the unknown value at a particular point is 

combination of nearby known values, with the proportion, or weight, given to each known-value based on its distance 

from unknown-value point.  

IRI Data Library (IDL): An online data repository and analysis tool.  

Machine-Learning: Where computer systems, using algorithms and statistical models, progressively improve their 

performance for a specific task.  

Madden-Julian Oscillation (MJO): One of the most important and identified fluctuations in tropical weather on weekly 

to monthly timescales. It is often characterised as a pulse of cloud and rain that moves eastward along the equator, 

typically occurring every 30–60 days.   

Mean absolute error (MAE): Used for verification of forecasts, it is the average size of the forecast error. 

Mean relative error (MRE): Similar to above; the average size of the forecast error compared to the actual values. 

Mean square skill score (MSSS): Used for verification of deterministic forecasts. The score compares the mean square 

error when using the forecasts with that of the mean square error of the climatology.  

Ministry of the Environment and Water Resources (MEWR): Ministry in Singapore that is committed to providing 

Singaporeans with a quality living environment. The two statutory boards associated with MEWR are: National 

Environment Agency (NEA; with meteorological services under MSS); and Singapore’s National Water Agency (PUB).  

Nino3.4: Index used to measure ENSO, based on sea surface temperatures in the tropical eastern Pacific.  

Northeast (NE): Generally referring to the wind direction, or monsoonal flow during the boreal winter. 

Nowcasting: Current weather conditions or a forecast of how these observed conditions may change in 0 to 2 hours 

(very near future).  

Numerical Weather Prediction (NWP): Computer models that solve mathematical equations representing atmospheric 

physics. Used extensively in weather forecasting. 

Probability of detection (POD): Based on the contingency table, the fraction of the observed events that were correctly 

forecasted. 

Python: General purpose programming language, in which code readability is important. 

Radar reflectivity: The amount of radiant-energy sent out by a radar that is reflected back (a potentially useful proxy for 

precipitation amount).  

Root mean squared error (RMSE): The square root of the MSE.  

Southwest (SW): Generally referring to the wind direction, or monsoonal flow during the boreal summer. 

Subseasonal to seasonal (S2S) forecasts: Forecasts between the weather timescale and seasonal timescale, often 

considered to be forecasts for two weeks to two months into the future. 

Success Ratio (SR): Based on the contingency table, the fraction of the forecasted events that were also observed.  

Tropical Rainfall Measuring Mission (TRMM): A gridded rainfall dataset based on satellite imagery. 
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World Climate Research Programme (WCRP): An international programme to facilitate the analysis and prediction of 

Earth system variability and change. 

World Meteorological Organisation (WMO): An agency under the United Nations for meteorology, both weather and 

climate, as well as operational hydrological services.  

World Weather Research Programme (WWRP): WMO research programme that focuses on high-impact weather.  
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