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EDITOR’S NOTE. 
Dear Readers, 

I am happy to present the fifth issue of MSS Research Letters. This is the first issue of 2020, a year that has been filled 

with lots of uncertainties, anxieties and hurdles. On a positive note, however, we have found our own ways to handle 

the tough moments and to adapt ourselves to this ‘new normal’. There is still a long way to go, and I believe that each 

one of us will definitely sail through this storm.  

The fifth issue of MSS research Letters presents four letters. Three of the four letters have been contributed by CCRS 

and WSD staff. The first letter covers the evaluation of MSS’ in-built SINGV-DA’s short-range forecasts of precipitation 

and lower tropospheric atmospheric conditions over Singapore over the meteorological year December 2018 to 

November 2019. The second letter is on the detection of hotspots by satellite products on the islands of Sumatra and 

Borneo and the verification of the results. The third letter speaks about the impact of transboundary haze on surface 

solar irradiance in Singapore. The final letter is about anthropogenic heat flux emission for Singapore, and is a part of a 

collaborative project between CCRS and the National University of Singapore, called: ‘Role of urbanization on the diurnal 

cycle of rainfall over Singapore’. 

Through this issue I also take pleasure in welcoming our new Director of CCRS, Dr Dale Barker, who will be joining us in 

August. Welcome, Dale! 

I would also like to thank the authors and reviewers of this issue, who in spite of the difficult and ‘new’ working 

conditions, made sure to provide their contributions, comments and revisions. My sincere acknowledgement goes to 

Micheline who has been helping me through the various stages of the editorial tasks of the MSS Research Letters. Thanks 

a lot Micheline! 

Enjoy this issue of MSS Research Letters, and I am looking forward to having more contributions in the next issues.  

Take care and stay safe, 

Hindumathi Palanisamy 

Editor, MSS Research Letters  

 

Cover figures: top left – 12-hour Island wide averaged PM10 concentration from 2010 to 2016. PM10 concentrations of 

25, 50 and 75 μg m-3 are marked with horizontal dashed lines (Page 25); bottom left – Hourly anthropogenic heat flux 

[W m-2] from all individual sectors in Singapore (Page 37); bottom right – Number of detected hotspots per island for 

January and July 2019, including missed detections, correct detections and non-verifiable detections (Page 19); top right 

- The SINGV-DA domain, with model orography shaded and a zoomed-in view of the area around Singapore in the inset 

(Page 6).   
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Verification of SINGV-DA forecasts over Singapore (December 
2018 to November 2019) 

Boon Chong Peter Heng, Xiang-Yu Huang 

Centre for Climate Research Singapore, Meteorological Service Singapore 

 

ABSTRACT 
SINGV-DA is a convective-scale numerical weather 

prediction (NWP) system developed specifically for 

Singapore and the surrounding region. As with any 

operational NWP system, forecast verification is a crucial 

activity, both to monitor model performance and to spur 

further development. This article presents an objective 

evaluation of SINGV-DA’s short-range forecasts of 

precipitation and lower tropospheric atmospheric 

conditions over Singapore over the meteorological year 

December 2018 to November 2019, benchmarked 

against the European Centre for Medium-Range 

Weather Forecasts (ECMWF) High Resolution (HRES) 

global model. We found that SINGV-DA’s performance 

varied between seasons, and that this seasonal variation 

is partly attributable to the driving model. Compared to 

the global model, which has a tendency to over-(under-) 

forecast light (heavy) rain events, SINGV-DA’s 

precipitation forecasts are markedly more realistic. 

 INTRODUCTION 
The Maritime Continent, situated in the tropics between 

the Indian and Pacific Oceans, is made up of thousands 

of islands separated by shallow seas. The meteorology of 

this region is dominated by diurnal cycles of convective 

activity driven by warm sea and land surface 

temperatures. Complex land-sea interactions coupled 

with weak synoptic forcings make short-range forecasts 

of such convective activity particularly difficult. Based on 

the few studies looking specifically at the performance 

of numerical weather prediction (NWP) systems over the 

Maritime Continent (McBride and Ebert, 2000; Hayashi, 

Aranami and Saito, 2008), it is quite clear that regional 

as well as global operational models are less skilful in 

short-range forecasts over the Maritime Continent than 

over mid-latitude regions. 

To improve weather forecasts for the western part of the 

Maritime Continent (roughly centred over Singapore), 

Meteorological Service Singapore (MSS) collaborated 

with the Met Office to develop SINGV, a convective-scale 

NWP system for the deep Tropics (Huang et al., 2019). 

Deterministic forecasts are provided by SINGV-DA (Heng 

et al., 2020), which couples the SINGV forecast model 

with a regional data assimilation system. Officially, 

SINGV-DA was put into operations in July 2019, but we 

have real-time forecast runs from a stable release 

version of SINGV-DA dating back to May 2018. Building 

on the work of Sun et al. (2020), who evaluated the skill 

of an earlier version of SINGV (without regional data 

assimilation) in forecasting Sumatra squalls, this paper 

examines the operational SINGV-DA’s forecast 

performance over Singapore over four seasons in the 

meteorological year December 2018 to November 2019. 

The European Centre for Medium-Range Weather 

Forecasts (ECMWF) High Resolution (HRES) global 

model, which provides the lateral boundary conditions 

(LBCs) for SINGV-DA, is evaluated against the same set of 

observations to serve as a performance benchmark for 

the regional system. 

The rest of this paper is organised as follows. The 

methodology is given in Section 2, wherein we describe 

the SINGV-DA system, the data used for verification, and 

the verification metrics adopted for model evaluation. 

The verification results are presented in Section 3. We 

conclude in Section 4 with a discussion of our findings 

and recommendations for further work. 

 METHODOLOGY 
Following a brief description of the SINGV-DA system, 

this section describes the forecast data extracted, and 

the verification metrics adopted for model evaluation. 

The same methodology is applied to forecasts from 

ECMWF to allow for comparisons between the two 

models. 

2.1 SINGV-DA 
The SINGV-DA model domain is shown in Figure 1. The 

forecast model (Huang et al., 2019) runs on a regular 

longitude-latitude horizontal grid with a resolution of 

0.0135° (approximately 1.5 km). There are 80 model 

levels in the vertical reaching up to 38.5 km. 
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The best-estimate initial conditions for each forecast 

cycle are produced by the regional data assimilation 

system using a three-dimensional variational (3D-Var) 

approach (Heng et al., 2020). This is done every three 

hours with an observation window of ±90 minutes. The 

data currently assimilated include conventional 

observations, satellite radiances, scatterometer winds 

and, based on imagery from the geostationary 

Himawari-8 satellite, atmospheric motion vectors and 

pseudo cloud observations at the cloud top (Renshaw 

and Francis, 2011). 

The forecast model is driven through its lateral 

boundaries by the ECMWF HRES model. The lateral 

boundaries are updated whenever a new ECMWF 

forecast cycle becomes available, such that the 03 (15) 

UTC cycle of SINGV-DA is driven by the 00 (12) UTC cycle 

of the ECMWF global model. Thus, we focus on verifying 

the 03 and 15 UTC cycles of SINGV-DA, benchmarked 

against the global model’s 00 and 12 UTC cycles 

respectively.  

2.2 Data 
To verify model forecasts of atmospheric conditions over 

Singapore, we use the high-quality rawinsonde 

observations collected twice daily by the MSS Upper Air 

Observatory, which was recently certified as a Global 

Climate Observing System (GCOS) Reference Upper-Air 

Network (GRUAN) site. For comparison with the 

rawinsonde observations, the model forecasts are 

interpolated to the location of the Upper Air 

Observatory. Within the boundaries of Singapore, lower 

tropospheric atmospheric conditions account for most 

of the weather phenomena of interest. As such, upper-

air forecast verification in this work is restricted to the 

pressure levels 925, 850 and 700 hPa. 

For precipitation over Singapore, we have data from 

MSS’s dense network of rain gauges on the island (Figure 

2). The observations and SINGV-DA’s precipitation 

forecasts are accumulated over three-hourly periods to 

match the temporal resolution of ECMWF forecasts. The 

relatively coarse horizontal resolution of ECMWF 

forecasts does not permit point-based verification. 

Instead, the three-hourly rainfall forecasts are averaged 

over land points representing Singapore in the 

respective models (Figure 2) for verification against the 

observations averaged over rain gauges. 

Table 1 shows the valid times at which the forecasts are 

verified against upper-air and rainfall observations and 

the corresponding forecast lead times with respect to 

the model cycles. We discard precipitation forecasts 

from the first nine (twelve) hours of each SINGV-DA 

(ECMWF) cycle because, based on the current 

operational forecasting schedule, these forecasts are not 

operationally useful. 

Figure 1: The SINGV-DA domain, with model orography shaded and a zoomed-in view of 

the area around Singapore in the inset. 
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2.3 Verification Metrics 
For upper-air variables (relative humidity, temperature 

and winds), we use mean biases and root-mean-square 

errors (RMSEs) to evaluate forecast performance. These 

give us, for each model, for each variable, at each 

pressure level, a pair of statistics quantifying forecast 

deviations from observations. 

For rainfall over Singapore, we construct a contingency 

table, the format of which is shown in Table 2, for each 

of six three-hourly rainfall thresholds: 0.1, 0.2, 0.5, 1, 2 

and 5 mm. With two cycles per model (Table 1), we have 

a total of 12 contingency tables per model. 

 

Table 2: Generic contingency table format, showing 

hits (A), false alarms (B), misses (C) and correct 

negatives (D). 

 

 

The following statistics are derived from each 

contingency table: 

Probability of detection (POD) =
𝐴

𝐴 + 𝐶
 

False alarm ratio (FAR) =
𝐵

𝐴 + 𝐵
 

Threat score or critical success index (CSI)

=
𝐴

𝐴 + 𝐵 + 𝐶
 

Frequency bias =
𝐴 + 𝐵

𝐴 + 𝐶
 

To facilitate comparisons, these statistics are 

represented as a point on a performance diagram with 

the coordinates (SR, POD), where SR = 1 – FAR is the 

success ratio (Roebber, 2009). A perfect forecasting 

system with POD = 1, FAR = 0, CSI = 1 and bias = 1 would 

therefore be represented as a point on the top right 

corner of the performance diagram. 

The verification statistics were calculated for each of the 

four seasons in Singapore—northeast monsoon 

(December – March), first inter-monsoon (April – May), 

southwest monsoon (June – September) and second 

inter-monsoon (October – November)—in the 

meteorological year December 2018 to November 2019. 

Table 1: Observation valid times and the corresponding forecast lead times with respect to the model cycles. 

 
Observed 

Total 
Yes No 

Forecast 
Yes A B A + B 

No C D C + D 

Total A + C B + D A + B + C + D 

Observations Upper-air Rainfall 

Valid times (UTC) 00 12 00 03 06 09 12 15 18 21 

ECMWF (00) T+24 - T+24 T+27 T+30 T+33 T+36 T+15 T+18 T+21 

SINGV-DA (03) T+21 - T+21 T+24 T+27 T+30 T+33 T+12 T+15 T+18 

ECMWF (12) - T+24 T+36 T+15 T+18 T+21 T+24 T+27 T+30 T+33 

SINGV-DA (15) - T+21 T+33 T+12 T+15 T+18 T+21 T+24 T+27 T+30 

Figure 2: Coastal outline of Singapore showing the locations of the rain gauges and the model land 

points representing Singapore for the purpose of verifying rainfall forecasts. 
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 RESULTS 

3.1 Upper-Air Variables 
The mean biases and RMSEs in upper-air relative 

humidity (RH) and temperature forecasts over Singapore 

at T+24 for ECMWF and T+21 for SINGV-DA are shown in 

Figure 3. At 925 hPa, SINGV-DA forecasts of RH and 

temperature were generally better than the global 

model’s. This is most evident during the inter-monsoon 

periods (April – May and October – November), where 

we see large reductions in RH and temperature biases 

due to downscaling.  

On the other hand, there appears to be a systematic dry 

bias in SINGV-DA forecasts at 850 hPa that cannot be 

attributed to the driving model. This bias in RH reflects 

the warm bias, relative to the global model as well as 

observations, that we see in SINGV-DA forecasts at 850 

hPa. The diagnostic plots for October 2019 (Figure 4) 

clearly illustrate this, as large dry biases at 850 hPa 

generally coincide with large warm biases. 

Figure 3: Seasonal mean biases and RMSEs in relative humidity (left) and temperature (right) forecasts over 

Singapore at T+24 for ECMWF and T+21 for SINGV-DA at 700 (upper), 850 (middle) and 925 hPa (lower). 
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The errors in SINGV-DA forecasts of RH and temperature 

at 700 hPa are generally in line with global model errors. 

The mean biases and RMSEs in the wind forecasts over 

Singapore are shown in Figure 5. There appears to be a 

systematic bias across seasons in the meridional 

component of ECMWF wind forecasts at 700 hPa. This 

bias was especially large in the first inter-monsoon 

period (April – May), during which the mean winds in 

both models had a southerly (positive meridional) 

component, as opposed to the observations. 

At the 925 hPa level, SINGV-DA winds appear to have a 

systematically stronger easterly (negative zonal) 

component than the observed winds. This bias cannot be 

attributed to the global driving model since the ECMWF 

forecasts had, in all but one season, mean biases in the 

opposite direction. On the other hand, the easterly 

biases in SINGV-DA at 925 hPa are smaller than the 

westerly biases in the global model during the inter-

monsoon periods (April – May and October – 

November). 

Since RMSEs tend to increase with the variability of the 

observations (Koh and Ng, 2009), a convenient gauge of 

forecast performance across seasons is the magnitude of 

the RMSE relative to the standard deviation of the 

observations. We observe that, in general, the RMSEs in 

the wind forecasts were smaller than the standard 

deviations of the observations (Figure 5), with the only 

exception occurring during the southwest monsoon 

season (June – September) in the zonal component of 

SINGV-DA wind forecasts at 925 hPa. 

3.2 Precipitation 
The contingency table statistics are plotted on the 

performance diagrams shown in Figure 6, with each 

point representing the average of two cycles (per model) 

and the horizontal and vertical ‘error’ bars showing the 

range of the SR and POD respectively for a specified 

rainfall threshold. The ‘error’ bars are as such surrogates 

for the uncertainties associated with the metrics, which 

in this case arise from the model cycles being initialised 

at different times. 

The performance diagrams show that, in general, threat 

scores (CSI) are lower for the rarer heavy rain events. For 

a target score of CSI = 0.2, generally only events smaller 

than 1 mm in 3 hours (averaged over the Singapore land 

area) may be forecast with sufficient skill. 

We may also observe that, consistently across the 

seasons, SINGV-DA and ECMWF rainfall forecasts have 

markedly different characteristics. The global model 

tends to over-(under-)forecast light (heavy) precipitation 

events, whereas SINGV-DA is significantly less biased, 

with the points lining up close to the diagonal in Figure 

6. 

There are clear seasonal variations in model 

performance. SINGV-DA performed poorly during the 

southwest monsoon season (June – September) and 

significantly better during the northeast monsoon 

season (December – March). This was also true for the 

global model, demonstrating the connection between 

SINGV-DA’s performance and that of its driving model. 

There appears to be no correlation between these 

statistics and model errors in lower tropospheric 

temperature and moisture (Figure 3). To illustrate, the 

ECMWF precipitation forecasts during the inter-

monsoon periods were not discernibly poorer even 

though contemporaneous forecasts of temperature at 

925 hPa suffered from relatively large mean biases and 

RMSEs. Similarly, relatively small (large) mean biases in 

SINGV-DA forecasts of RH at 850 hPa in the first (second) 

inter-monsoon period are not associated with more 

(less) skilful precipitation forecasts.  

Figure 4: SINGV-DA forecasts of RH (top) and temperature (bottom) at 850 hPa compared to rawinsonde 

observations in October 2019. 
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Instead, there appears to be a link, for the global model 

as well as SINGV-DA, between rainfall forecast skill and 

errors in the zonal wind component at 925 hPa (Figure 

5). In particular, the poor precipitation forecasts in 

SINGV-DA during the southwest monsoon season are 

associated with relatively large errors in the zonal wind 

component at 925 hPa in the same period. 

 

 DISCUSSION AND CONCLUSIONS 
We have presented in this work the first full-year 

objective evaluation of SINGV-DA and ECMWF 

deterministic forecasts over Singapore. While the 

performance metrics are far from being comprehensive, 

they do provide an important first look at the 

characteristics of short-range forecasts of significant 

variables in this region. We summarise our main findings 

Figure 5: Seasonal mean biases and RMSEs in the zonal (left) and meridional (right) components of wind 

forecasts over Singapore at T+24 for ECMWF and T+21 for SINGV-DA at 700 (upper), 850 (middle) and 925 hPa 

(lower). The observed mean wind components and standard deviations are also plotted to provide perspective. 
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in this concluding section with recommendations for 

further research. 

It is clear from the results that model forecast 

performance varies from season to season. The roughly 

synchronous variations in the performance of the 

models demonstrate the coupling between SINGV-DA 

and its driving model, which underscores the importance 

of the LBCs even for a limited area model in the tropics, 

where the synoptic atmospheric forcing is relatively 

weak. On the other hand, SINGV-DA is not a mere slave 

of its driving model, since the difference in skill between 

the models also varies from season to season (see, for 

example, Figure 3). We may therefore conclude that 

SINGV-DA exhibits a degree of dependence on its driving 

model but modifies the global forecast for better or for 

worse according to its strengths and weaknesses in 

capturing meteorological phenomena in this region. 

Figure 6: Seasonal performance diagrams for rainfall over Singapore. Each point represents the contingency 

table metrics for a specified rainfall threshold (shown in the tables below) averaged over two cycles per 

model. The SR and POD are given by the x- and y-coordinates, while the frequency bias and CSI are 

represented by the position of the point with respect to the diagonal dashed lines and the solid contours 

respectively. The table also shows the number of observed events exceeding each threshold. 
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We also see in the seasonal variations in performance 

statistics a tentative link between low-level winds and 

precipitation over Singapore. In contrast, there is little 

correlation between errors in the lower tropospheric 

thermodynamic variables and precipitation forecast skill. 

The performance statistics presented in this work show 

that SINGV-DA forecasts of lower tropospheric 

atmospheric conditions are generally on par with those 

of the world-leading ECMWF global model (Section 3.1). 

We see added value in SINGV-DA forecasts at 925 hPa, 

particularly during the inter-monsoon periods, which are 

characterised by weak and variable winds. This 

underscores the benefit of a high-resolution 

representation of the topography of the Maritime 

Continent, which exerts a strong influence on near-

surface atmospheric conditions in the absence of strong 

synoptic drivers. 

The rainfall forecast statistics (Figure 6) highlight the 

fundamental difference between the global model and 

SINGV-DA in representing convective processes. SINGV-

DA forecasts are clearly more realistic (in terms of 

frequency bias) across the full range of rainfall 

thresholds examined in this work. This is consistent with 

climate modelling studies in the past showing the 

limitations of global models with parametrised 

convection (Neale and Slingo, 2003; King and Vincent, 

2018) and the benefits of convection-permitting 

simulations over the Maritime Continent (Love, 

Matthews and Lister, 2011; Holloway, Woolnough and 

Lister, 2012; Vincent and Lane, 2017; Argüeso, Romero 

and Homar, 2020). 

While SINGV-DA’s threat scores for heavy rain events 

over Singapore are not consistently higher than the 

global model’s, this should be interpreted in light of the 

small spatial scale of evaluation, the total land area of 

Singapore being just over 720 km2. We can expect to see 

more added value in SINGV-DA forecasts of precipitation 

at larger scales (Clark et al., 2016). 

The verification statistics presented in this work should 

feed back into model development to improve SINGV. 

The seasonal variations in SINGV-DA’s performance 

suggest that the model performs better in some weather 

regimes than others. Further work to stratify the 

verification statistics by weather regimes such as those 

identified by Hassim and Timbal (2019) would be needed 

to isolate model flaws. This would complement the work 

of Sun et al. (2020), who evaluated the SINGV’s forecast 

skill specifically in relation to Sumatra squalls. 

Based on the apparent link between low-level wind 

forecast errors and precipitation forecast skill, and 

evidence in the literature that low-level convergence 

plays an important role in thunderstorm initiation in this 

region (Weller et al., 2017), we may hypothesise that 

improving low-level wind forecasts in SINGV-DA would 

be crucial to obtaining better precipitation forecasts. 

This could be achieved through improving the 

convective-scale data assimilation system (Gustafsson et 

al., 2018; Heng et al., 2020) or by using the global 

forecast to nudge SINGV-DA dynamical fields in the 

interior of the domain (Zhao et al., 2016). 

On the other hand, we should not dismiss the possibility 

that forecast errors in the low-level winds are 

symptomatic—rather than the cause—of poor 

precipitation forecasts, as strong updraughts in deep 

convection and the subsequent downdraughts in 

precipitating cores may modify low-level winds. From 

this perspective, gains in forecast performance may be 

obtained by improving the representation of 

precipitation processes in SINGV-DA. 

Finally, we may gain further insights by verifying the 

forecasts against observations with higher resolutions in 

space and time, such as surface observations and radar 

data. Similarly, the use of other verification metrics such 

as the Stable Equitable Error in Probability Space 

(Rodwell et al., 2010) and methods such as Structure-

Amplitude-Location (Wernli et al., 2008) may help to 

clarify model tendencies. 

 ACKNOWLEDGMENTS 
The contributions of Xiangming Sun, who led early 

efforts at MSS in model evaluation, are gratefully 

acknowledged. We thank Wee Kiong Cheong and other 

operational meteorologists at MSS for their feedback in 

the selection of verification metrics. Credit goes also to 

Jeff Lo and Jerry Liu for the operational implementation 

and maintenance of SINGV-DA. 

 REFERENCES 
Argüeso, D., Romero, R. and Homar, V. (2020) 

'Precipitation Features of the Maritime Continent in 

Parameterized and Explicit Convection Models', Journal 

of Climate, vol. 33, no. 6, pp. 2449-2466. 

Clark, P., Roberts, N., Lean, H., Ballard, S.P. and Charlton-

Perez, C. (2016) 'Convection-permitting models: a step-

change in rainfall forecasting', Meteorological 

Applications, vol. 23, pp. 165-181. 



Issue #5 MSS Research Letters Page 13 
 

 

Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., 

Weissmann, M., Reich, H., Brousseau, P., Montmerle, T., 

Wattrelot, E., Bučánek, A., Mile, M., Hamdi, R., Lindskog, 

M., Barkmeijer, J., Dahlbom, M., Macpherson, B., 

Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, 

D., Liu, S., Ikuta, Y. and Fujita, T. (2018) 'Survey of data 

assimilation methods for convective-scale numerical 

weather prediction at operational centres', Quarterly 

Journal of the Royal Meteorological Society, vol. 144, pp. 

1218-1256. 

Hassim, M.E.E. and Timbal, B. (2019) 'Observed Rainfall 

Trends over Singapore and the Maritime Continent from 

the Perspective of Regional-Scale Weather Regimes', 

Journal of Applied Meteorology and Climatology, vol. 58, 

no. 2, pp. 365-384. 

Hayashi, S., Aranami, K. and Saito, K. (2008) 'Statistical 

Verification of Short Term NWP by NHM and WRF-ARW 

with 20 km Horizontal Resolution around Japan and 

Southeast Asia', Scientific Online Letters on the 

Atmosphere, vol. 4, pp. 133-136. 

Heng, B.C.P., Tubbs, R., Huang, X.-Y., Macpherson, B., 

Barker, D.M., Boyd, D.F.A., Kelly, G., North, R., Stewart, 

L., Webster, S. and Wlasak, M. (2020) 'SINGV-DA: A data 

assimilation system for convective-scale numerical 

weather prediction over Singapore', Quarterly Journal of 

the Royal Meteorological Society, pp. 1-16. 

Holloway, C.E., Woolnough, S.J. and Lister, G.M.S. (2012) 

'Precipitation distributions for explicit versus 

parametrized convection in a large-domain high-

resolution tropical case study', Quarterly Journal of the 

Royal Meteorological Society, vol. 138, no. 668, pp. 

1692-1708. 

Huang, X.-Y., Barker, D., Webster, S., Dipankar, A., Lock, 

A., Mittermaier, M., Sun, X., North, R., Darvell, R., Boyd, 

D., Lo, J., Liu, J., Macpherson, B., Heng, P., Maycock, A., 

Pitcher, L., Tubbs, B., McMillan, M., Zhang, S., Hagelin, S., 

Porson, A., Song, G., Beckett, B., Cheong, W.K., Semple, 

A. and Gordon, C. (2019) 'SINGV – the Convective-Scale 

Numerical Weather Prediction System for Singapore', 

ASEAN Journal on Science & Technology for 

Development, vol. 36, no. 3, pp. 81-90. 

King, A.D. and Vincent, C.L. (2018) 'Using Global and 

Regional Model Simulations to Understand Maritime 

Continent Wet-Season Rainfall Variability', Geophyiscal 

Research Letters, vol. 45, no. 22, pp. 12534-12543. 

Koh, T.-Y. and Ng, J.S. (2009) 'Improved diagnostics for 

NWP verification in the tropics', Journal of Geophysical 

Research, vol. 114, p. D12102. 

Love, B.S., Matthews, A.J. and Lister, G.M.S. (2011) 'The 

diurnal cycle of precipitation over the Maritime 

Continent in a high-resolution atmospheric model', 

Quarterly Journal of the Royal Meteorological Society, 

vol. 137, no. 657, pp. 934-947. 

McBride, J.L. and Ebert, E.E. (2000) 'Verification of 

Quantitative Precipitation Forecasts from Operational 

Numerical Weather Prediction Models over Australia', 

Weather and Forecasting, vol. 15, pp. 103-121. 

Neale, R. and Slingo, J. (2003) 'The Maritime Continent 

and Its Role in the Global Climate: A GCM Study', Journal 

of Climate, vol. 16, no. 5, pp. 834-848. 

Renshaw, R. and Francis, P.N. (2011) 'Variational 

assimilation of cloud fraction in the operational Met 

Office Unified Model', Quarterly Journal of the Royal 

Meteorological Society, vol. 137, pp. 1963-1974. 

Rodwell, M.J., Richardson, D.S., Hewson, T.D. and 

Haiden, T. (2010) 'A new equitable score suitable for 

verifying precipitation in numerical weather prediction', 

Quarterly Journal of the Royal Meteorological Society, 

vol. 136, no. 650, pp. 1344-1363. 

Roebber, P.J. (2009) 'Visualizing Multiple Measures of 

Forecast Quality', Weather and Forecasting, vol. 24, no. 

2, pp. 601-608. 

Sun, X., Huang, X.-Y., Gordon, C., Mittermaier, M., 

Beckett, R., Cheong, W.K., Barker, D., North, R. and 

Semple, A. (2020) 'A Subjective and Objective Evaluation 

of Model Forecasts of Sumatra Squall Events', Weather 

and Forecasting, vol. 35, no. 2, pp. 489-506. 

Vincent, C.L. and Lane, T.P. (2017) 'A 10-Year Austral 

Summer Climatology of Observed and Modeled 

Intraseasonal, Mesoscale, and Diurnal Variations over 

the Maritime Continent', Journal of Climate, vol. 30, no. 

10, pp. 3807-3828. 

Weller, E., Shelton, K., Reeder, M.J. and Jakob, C. (2017) 

'Precipitation associated with convergence lines', 

Journal of Climate, vol. 30, pp. 3169-3183. 

Wernli, H., Paulat, M., Hagen, M. and Frei, C. (2008) 

'SAL–A Novel Quality Measure for the Verification of 

Quantitative Precipitation Forecasts', Monthly Weather 

Review, vol. 136, no. 11, pp. 4470-4487. 



Issue #5 MSS Research Letters Page 14 
 

 

Zhao, Y., Wang, D., Liang, Z. and Xu, J. (2016) 'Improving 

numerical experiments on persistent severe rainfall 

events in southern China using spectral nudging and 

filtering schemes', Quarterly Journal of the Royal 

Meteorological Society, vol. 142, no. 701, pp. 3115-3127. 

 



Issue #5 MSS Research Letters Page 15 
  

Preliminary evaluation of the NOAA-20/JPSS-1 Active Fires 750m 
satellite product in Sumatra and Borneo using Sentinel-2 satellite 
data 
Efthymia Pavlidou, Songhan Wong 

Weather Services Department, Meteorological Service Singapore 

 

ABSTRACT 
Timely detection and monitoring of active forest and 

land fires are crucial and challenging for Southeast Asia, 

considering the ecosystem complexity and the severity 

of fire and smoke haze impacts in the region. Global 

satellite-based products are operationally available but 

need to be assessed, and potentially adjusted, to address 

local conditions. In this study, hotspots detected by the 

NOAA-20/JPSS-1 Active Fires operational product suite 

are verified in wet and dry months (January and July 

2019) in fire prone areas of Sumatra and Borneo in 

Southeast Asia. Given the scarcity of ground-based data, 

verification is based on high spatial resolution optical 

imagery from Sentinel-2 allowing for detailed visual 

examination of the study areas. Furthermore, Fire 

Radiative Power (FRP) estimates from the NOAA-

20/JPSS-1 Active Fires product suite are examined along 

with the Confidence Levels reported for the detections. 

High Precision scores are found overall (> 0.70) indicating 

that the majority of reported hotspots in NOAA-20/JPSS-

1 Active Fires corresponded to actual fires seen in 

Sentinel-2. However, the number of missed detections 

was almost as high as the number of reported hotspots. 

Common reasons for missed detections are cloud cover 

and the presence of smoke obscuring burning areas. 

When higher Confidence Levels of reported hotspots are 

considered, hotspot detection performance improves. 

At the same time, high Confidence Levels coincide 

already with fires of low estimated FRP, indicating a 

potential for early fire detection. Finally, the study 

demonstrates an approach to quantitatively consider 

Confidence Levels in order to optimise utilisation of the 

product for decision-making. 

 

 

                                                                 
1 MSS hosts the  ASEAN Specialized Meteorological 
Centre whose responsibility is to monitor, assess and 
provide early warnings of the occurrence of 

1 INTRODUCTION 
Forest and land fire occurrence and intensity are 

reportedly increasing worldwide, with catastrophic 

effects on ecosystem loss, greenhouse gas emissions and 

poor air quality (Liu and Stanturf, 2010). These trends are 

particularly relevant in Southeast Asia, where 

transboundary haze pollution arising from forest and 

land fires has resulted in significant impact to the 

economy, public health and environment. Satellite-

based fire detection plays a crucial role in helping local 

authorities prioritise their limited resources and 

undertake mitigation measures effectively, especially in 

remote areas that lack ground-based data. 

The Meteorological Service Singapore (MSS) 1 utilises 

satellite data from a wide range of geostationary and 

polar-orbiting sensors on board satellites including 

NOAA-20, Suomi-NPP, TERRA, AQUA, METOP, Sentinel, 

Himawari-8 and FY-4A (for further information on 

meteorological satellites see (Schmetz and Menzel, 

2015) and the references therein). Among the latest 

operationally available products is the NOAA-20/JPSS-1 

Active Fires product which provides active fire pixels and 

associated detection confidence estimates, along with 

Fire Radiative Power (FRP) calculations, which is a 

measure of the radiant energy released per unit time. 

Active fire detection is based on multi-spectral 

observations of the Visible Infrared Imaging Radiometer 

Suite sensor (VIIRS) on board the NOAA-20 polar orbiting 

satellite. The sensor’s sampling and radiometric features 

are well-suited for operational fire monitoring (Csiszar et 

al., 2013), during day and night time using separate 

algorithms respectively. In the latest version, the 

detection algorithms apply a sequence of adjusted 

threshold-based and contextual tests to flag hotspots 

and subsequently reject false positives, with the 

transboundary haze from land and forest fires in the 
region. 
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intention to improve detection capability as compared to 

previous versions of the product (Schroeder et al., 2014).  

Preliminary assessments of the algorithm on the global 

scale have shown improvements in detection rates and 

reduction in false positives (Schroeder et al., 2014; 

Csiszar et al., 2013). However, product evaluations till 

now rely on a limited number of test case studies using 

ground- and airborne-fire data, as well as on inter-

comparisons with previous versions of the same product 

(Csiszar et al., 2018). The product provider further notes 

that the algorithm is tuned to minimise errors globally, 

and that its performance is expected to vary locally. This 

has to be taken into consideration for Southeast Asia 

because the complexity of biomass burning in the region 

(Reid et al., 2013) makes the task of monitoring even 

more challenging. In order to quantify the product’s 

limitations and optimise its use in our region, verification 

of the product was conducted in selected fire-prone 

locations in Southeast Asia. 

This report shares preliminary verification results of the 

hotspots detected by the NOAA-20/JPSS-1 Active Fires 

satellite product on the islands of Sumatra and Borneo in 

January (wet season) and July (dry season) 2019. Given 

the lack of ground-based datasets, high-resolution 

images from the Sentinel-2 optical satellite were used to 

verify reported hotspots and identify missed detections 

(Filipponi, 2019). Sentinel-2 imagery, due to its high 

spatial resolution, has shown great potential and has 

been used for applications ranging from mangrove tree 

mapping, sub-pixel landscape feature characterisation 

and ship recognition, to burnt area detection and active 

fire monitoring (Atzberger, 2016; Roteta et al., 2019; 

Cicala et al., 2018; Amos et al., 2019). Confidence Levels 

and Fire Radiative Power estimates were examined to 

understand the performance of the detection algorithm. 

2 DATA AND METHODS 

2.1 Data 
NOAA-20 hotspots were retrieved from MSS’ archives, 

and Sentinel-2 imagery was acquired through the 

Copernicus Open Access Hub 

(https://scihub.copernicus.eu). Sentinel-2 imagery was 

chosen due to its high spatial resolution (10-60 m 

depending on the band) and high revisit frequency (5-

day revisit time) as compared to other similar satellites. 

Fire-prone areas with varying nature of burning activities 

(from isolated fires to large clusters of fires) were chosen 

for analyses in the neighbourhood of Singapore – in 

central Sumatra and Borneo (Figure 1). Sentinel-2 image 

tiles for January and July 2019 were retrieved to collect 

samples that represent typical conditions in months with 

low and high levels of fire occurrence respectively. Tiles 

from months that would be completely covered by  

Figure 1: Location of selected Sentinel-2 tiles over the studied areas (highlighted). Tile 48NVG to the east of Singapore 

is grouped with the Sumatra data subset. Underlying image: Himawari-8 RGB True colour composite. 

https://scihub.copernicus.eu/
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extensive fires were not selected to avoid bias (Csiszar, 

et al., 2006). Extensive fires are easier to detect by the 

algorithms, but a timely response requires that fires 

need to be detected before they become extensive. We 

used information on the locations of flagged hotspots, 

associated confidence intervals and FRP for all hotspots 

within the chosen Sentinel-2 tiles. We then visually 

inspected and analysed Sentinel imagery based on two 

Red-Green-Blue (RGB) colour composites: SWIR@1.6 

µm, NIR@0.86 µm, and VIS@0.66 µm; and NIR@0.86 

µm, VIS@0.66 µm and VIS@0.56 µm. These RGB 

composites are designed to detect fire, smoke and burnt 

areas. All bands were sampled to a 20 m grid. 

True Positive 

 

 A NOAA-20 hotspot coincides with an active fire visible on a Sentinel-2 image on the 

same and/or immediately preceding date and within the same 750 m grid cell (e.g. 

in Figure 2, examples are indicated as C1, C2 and C3). It would be reasonable to 

assume that two hotspots appearing in the same location within 24 hours 

correspond to a single fire rather than a second fire breaking out in an already burnt 

location.  

 A NOAA-20 hotspot is located within the same 750 m grid cell as a burned scar visible 

in the Sentinel-2 image of an immediately available subsequent date, where the 

burned scar is not visible at the same location in a Sentinel-2 image of the 

immediately available preceding date. For example, if a NOAA-20 hotspot is reported 

on July 20th and there is no available Sentinel image on that date, the hotspot is 

confirmed if a burned scar is present in the same location in an image on July 22nd 

and is not present in an image on July 18th (example as in label ‘E’ in Figure 2). 

 

False Positive 

 

 A hotspot is reported by NOAA-20 but there is no visible active fire in a Sentinel-2 

image on the same and/or immediately preceding date and within the same 750 m 

grid cell. 

 A hotspot is reported by NOAA-20 but there is no burnt scar visible on the same or 

immediately subsequent available date on a Sentinel-2 image within the same 750 

m grid cell. 

 

Missed Detection 

(False Negative) 

 

 Active fires are present in the Sentinel-2 image, but no NOAA-20 detection is 

reported in the same 750 m grid cell on the same date (example as in label ‘A’ in 

Figure 2). 

 Burnt scars are present in a Sentinel-2 image and are not present in the immediately 

preceding image, and no hotspot was detected in between. In that case, only one 

missed detection is registered, and it is assigned the date range between the two 

available images as it could have appeared at any time in between.   

 

Not verifiable 

 

 There is cloud cover on the location of a reported hotspot on the images on/close to 

the same date. 

 A hotspot is reported on the edge of the tile and there is no visible active fire or 

burned scar within the image. 

 

Table 1: Criteria for hotspot verification 

mailto:SWIR@1.6
mailto:NIR@0.86
mailto:VIS@0.66
mailto:NIR@0.86
mailto:VIS@0.66
mailto:VIS@0.56
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2.2 Verification procedure 
Despite the suitability of Sentinel-2 for verification (high 

spatial resolution and revisit frequency), challenges 

exist. Firstly, the two sensors on board Sentinel-2 and 

NOAA-20 have different spatial resolutions (20 m for 

Sentinel-2 and 750 m for NOAA-20’s VIIRS). 

Furthermore, the morning orbital overpass of Sentinel-2 

does not coincide with NOAA’s afternoon overpass; and 

Sentinel-2 (5-days) has a lower revisit frequency than 

NOAA-20 (1-day). To account for the difference in spatial 

resolution between the sensors, a 750 m-grid is overlaid 

on the Sentinel-2 imagery and hotspots in the 750 m-grid 

are verified with the corresponding 20 m-grid cells 

where they are observed. To account for the temporal 

differences between the sensors, Sentinel-2 imagery is 

used to verify reported hotspots from NOAA-20 on the 

same day and in the time interval between acquisitions. 

The detailed verification criteria are presented in Table 

1.  

Figure 2: Examples of NOAA-20 VIIRS hotspot verification (cyan circles; size scaled to confidence level) using Sentinel-

2 imagery (background image). The grids are the 750 m grids of the NOAA-20 VIIRS. Detail from Borneo Tile T49MHT, 

25/7/2019 (above) and 30/7/2019 (below). A1, 2: missed detections. No NOAA-20 hotspot is reported over fires 

detected on Sentinel-2 within the 750-m grid tile. B: False detection. Low confidence hotspot is reported in the river. 

C1, 2, 3: Confirmed same-date detections. There are active fires visible within 750m of the reported hotspots on the 

same date as the image. D: Same as (C), but the detected hotspot is assigned very low confidence despite the large 

active fire in the grid cell. E: Confirmed hotspots within a time interval. The reported hotspots (26/7/2019, 

27/7/2019) appear in a location where there is a burnt scar in the subsequent available image (30/7/2019) and there 

is no burnt scar in the preceding image (25/7/2019). 
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Small fires covering an area less than 5x5 Sentinel-2 

pixels (100x100 m) were excluded from verification. 

Such fires were rare occurrences and, due to their size, 

were not expected to be detected by NOAA-20’s VIIRS 

sensor spatial resolution. 

2.3 Performance metrics 
Verified hotspot detections were used to calculate True 

Positives (TP) and False Positives (FP), and Missed 

detections were used to calculate False Negatives (FN). 

True Negatives (TN) of non-fire pixels were not 

considered in selection of suitable metrics because the 

inclusion would make the sample biased towards the 

relatively easy detection of non-events and inflate the 

score. Furthermore, the TN would be in any case 

dependent on the size of Sentinel-2 tiles. The metrics 

used to evaluate performance of the satellite product 

are summarized in Table 2. Precision indicates the 

portion of reported fires which were verified as correct 

detections, and Recall indicates which portion of all the 

real-world fires could be detected by the product. Both 

these metrics are relevant for policy makers: an 

algorithm of high precision minimizes mobilization of 

ground response for false detections, while an algorithm 

with high recall ensures that fires do not remain 

undetected. There is often a trade-off between the two, 

so their harmonic mean (the F1 score) is commonly used 

to evaluate both of them with a single metric. The 

Precision-Recall curve graphically describes that trade-

off, and the area under this curve (AUC) quantifies the 

trade-off at different thresholds. More details can be 

found for example in Luquea et al. (2019) and Saito and 

Rehmsmeier (2015). 

Metric Interpretation Formula 

Precision Ratio of the reported detections that were 
actual fires. Perfect score is 1.0 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

Recall Ratio of all the actual fires which were 
correctly detected. Perfect score is 1.0 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   

F1-score Weighted average of Precision and Recall 
indicating overall detection performance. 
Ideal F1 score=1 

𝐹1 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Area Under the 
Curve (AUC) 

An expression of the potential to optimise 
the trade-off between Precision and Recall 
by considering different detection 
confidence thresholds 

The area under a precision/recall curve 

Table 2: Performance metrics applied to evaluate hotspot detection 

 

 

Figure 3: Number of detected hotspots per island for January and July 2019, including missed detections, correct 

detections and non-verifiable detections. 
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2.4 Assessment based on hotspot 

detection Confidence Levels 
The Confidence Levels given by the NOAA-20 active fire 

product are used to assess the likelihood of false 

detections. This information can be utilised by 

recalculating True Positives, False Positives and False 

Negatives at different confidence thresholds. When a 

threshold is set to T, then NOAA-20 detections count as 

hotspots only if their confidence level exceeds T. 

Precision-Recall curves are used at different thresholds 

to evaluate the trade-off between the two metrics (Saito 

and Rehmsmeier, 2015) and the relation between the 

reported Fire Radiative Power (FRP) and detection 

confidence is examined. 

3 RESULTS 
With visual inspection of a total of 162 Sentinel-2 images 

over Sumatra and Borneo and for both January and July 

2019, 1149 observations were verified, of which NOAA-

20 detected 589 (436 TP and 153 FP) and missed 560 

(FN). 216 NOAA-20 hotspot detections were classified as 

non-verifiable due to persistent cloud cover or partial 

data availability in the tile area. More detections were 

reported in July (1297, of which 1092 verifiable) than in 

January (68, of which 57 verifiable), with July being a 

drier month in Borneo and Sumatra. Overall, the number 

of verified hotspots in Borneo (749) was almost double 

the number recorded in Sumatra (400). Detailed 

numbers of hotspots in each of the examined tile areas 

are shown in Figure 3. 

 

The distribution of FRP of detected NOAA-20 hotspots 

differs between Sumatra and Borneo, as well as in 

different seasons (Figure 4). FRP estimates relate directly 

to fuel consumption and smoke emission (Xu et al., 2017) 

and indicate the rate of combustion. Type of fuel, fuel 

availability, and spatial extent of the fire within a pixel 

may contribute to FRP. Mean FRP is lower in January 

than in July, and in July also FRP variability is higher. No 

clear differences were found between mean FRP in 

Sumatra and Borneo. These observations may be related 

to the differences in available fuel or combustion rate 

between different seasons, local differences in fuel type 

and the presence of fire in small agricultural parcels as 

compared to fire in larger, forested areas.  Considering 

the limited sampling area and period, these findings are 

indicative but not necessarily representative of typical 

fire patterns on the two islands. 

Regarding the relationship between FRP and detection 

confidence, it was noted that low radiative active fires 

(FRP<20 MW) were detected with moderate to high 

levels of confidence (Figure 5, left panel). In fact, most of 

the reported hotspots had FRP lower than 20 MW and 

were detected with a confidence between 60-90%. 

Increasing FRP coincided with the detection of hotspots 

with very high confidence level (>90%). On the other 

hand, most False Positives were found among hotspots 

with low FRP and detection confidence (Figure 5, right 

panel). False Positives had a mean FRP of 16 and were 

reported with a mean Confidence Level of 67%. 

Figure 4: Boxplot of Fire Radiating Power (FRP) of NOAA-20 detected hotspots over Sumatra and Borneo for January 

and July 2019. FRP statistics do not include False Positives. 
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Numbers of True and False Positives and False Negatives, 

Precision values, Recall values and F1 scores, calculated 

based on the verifiable hotspots for different locations 

and months, are summarized in Table 3. 

The use of stricter confidence thresholds for hotspot 

detection leads to an increase in Precision (Figure 6). 

Higher precision indicates a decrease of False Positives, 

while decreasing Recall could mean that more fires 

remain undetected. 

 

4 DISCUSSION AND CONCLUSIONS 
This study is a preliminary assessment of the new 

operational NOAA-20/JPSS-1 Active Fires product, 

specifically for areas in Southeast Asia close to 

Singapore, which are characterized by regular high fire 

occurrence that may potentially affect air quality in 

Singapore. It should be noted that verification is done 

only with Sentinel-2 data, due to lack of ground truth 

data. Therefore, the results of our study are not 

conclusive but rather indicative of product performance. 

 January & July Both locations  

 Sumatra Borneo January July All 

TP 130 306 17 419 436 

FP   68   85  9 144 153 

FN 202 358 31 529 560 

Total 400 749 57 1092 1149 

Precision 0.66 0.78 0.65 0.74 0.74 

Recall 0.39 0.46 0.35 0.44 0.44 

F1-score 0.49 0.58 0.46 0.55 0.55 

AUC 0.83 0.87 0.78 0.87 0.86 

Table 3: Verification results and relevant metrics for different locations and detection algorithms. The metrics are 

calculated for fire hotspots at all Confidence Levels  

Figure 5: (Left image) Bivariate distribution of Fire Radiating Power (FRP) and detection confidence for NOAA-20 

hotspots, based on kernel density estimation. (Right image) Scatterplot of the same FRP and confidence values, with 

different colours assigned to True and False Positives after verification. 
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Considering the hotspots detected by NOAA-20, 

reported FRP levels are low in comparison to the findings 

of Xu et al. (2017). This is consistent with the presence of 

low-radiating agricultural residue burning and/or 

smouldering peat fires in the area, as described 

respectively by Xu et al. (2017) and Elvidge et al. (2015). 

However, low FRP did not seem to hinder detection, as 

medium- to high confidence levels were recorded even 

for fires with low FRP. This is important, as hotspots need 

to be detected as early as possible to minimize damage 

and to ensure efficient allocation of firefighting 

resources. 

 

We found differences in terms of the number of 

hotspots, FRP and detection performance metrics 

between Sumatra and Borneo and between July and 

January. These differences may have been partially due 

to the different number of observations between 

subsets, but nevertheless seem to support the need to 

tune the thresholds of detection algorithms locally and 

seasonally as suggested by Csiszar et al. (2018). 

Considering the trade-off between correct and missed 

detections, better product performance was found in 

July 2019 (dry season) as fires were likely to be more 

intense and easier to detect. 

 

Figure 6: Performance metrics for the hotspot detection results. In Panel (a), Precision, Recall and F-scores for the 

whole dataset are calculated at different detection thresholds based on the confidence of reported hotspots. Panel 

(b) shows the Precision-Recall Curve for the same thresholds, and the Area under the Curve (AUC). Panels (c)-(f) are 

the same as (a) but have been separated into results for the different islands and months of the analysis. Calculations 

take into consideration NOAA-20 reported hotspots as well as missed detections (no assigned Confidence Level) 

registered by visual inspection of Sentinel-2 imagery. 
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The Confidence Levels of the algorithm are a heuristic 

measure determined by the number of adjacent cloud 

pixels, adjacent water pixels, and temperature 

thresholds. The verification procedure showed that 

there are cases of hotspots with very high and very low 

Confidence Levels which occur almost at the same time 

and location within actual fires (example D in Figure 2). 

A possible reason for such occurrences may be that 

pixels within an active fire area may be obscured by 

smoke emitted from nearby pixels. Another potential 

reason may be the presence of clouds in nearby pixels, 

which would reduce confidence in the detection. To that 

end, post-processing of registered alarms may help to 

distinguish low-confidence detections which are located 

close to high-confidence actual hotspots from others 

which correspond to False Positives. 

The number of undetected fires (FN) in this study is 

almost as high as the number of registered hotspots (TP 

and FP), despite the fact that we did not consider fires 

with extent smaller than 100x100m2. The highest F1 

scores are obtained when no threshold is imposed on 

Confidence Levels, but this could mean trading higher 

Recall (lesser missed detections) values for lower 

Precision values (more False Positives). This could be 

desirable to minimize missed detections, and for the 

user to ensure response to the highest number of fire 

incidents. In this case, all hotspots reported by the 

product should be considered regardless of detection 

Confidence Levels. However, if the Active Fires product 

is used to reduce mobilization of ground response teams 

for false positives, detection confidence information 

may be useful. Using a 70% confidence cut-off, for 

example, 96% of declared hotspots correspond to 

confirmed fires. Users could make use of such 

information to make decisions based on their risk 

appetite for different scenarios and the associated cost-

benefit analyses. 

The most common potential source of missed detections 

is the presence of smoke or clouds. On the other hand, 

most of the recorded false positives included cloud 

edges and bright surfaces in the vicinity of water pixels. 

Tuning background characterization for the algorithm 

with respect to these sources of error could improve 

detection results, as suggested by Tsidulko et al. (2019), 

and this could lead to improved performance tailored to 

our region. It would thus be useful to include in future 

research more regions in Southeast Asia, comparison 

between night-time and day-time algorithm 

assessments, and ground-truth data wherever available. 

Finally, a database of verified hotspot detections can 

serve as a label dataset to train supervised algorithms for 

automated hotspot detection in the future.  
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ABSTRACT 
During transboundary haze episodes, local visibility in 

Singapore is often reduced due to visible light scattering 

by airborne haze particles. This scattering also affects the 

transmissivity of the atmosphere, which implies that 

solar irradiance received by solar panels is affected by 

the presence of airborne haze particles. To investigate 

the impact of haze on the transmissivity of the 

atmosphere, the statistical distributions of clearness 

index (the transmissivity of the atmosphere) during hazy 

and non-hazy days were compared. A two-sample 

Kolmogorov-Smirnov (K-S) test demonstrated that haze 

particles do affect the transmissivity of the atmosphere. 

However, the analysis showed that even during hazy 

periods, cloud cover remains an important factor in solar 

forecasting. The findings suggest that an effective solar 

forecasting system for hazy periods must be able to 

predict both haze particle concentrations and cloud 

spatial distributions reliably.  

1 INTRODUCTION 
Singapore has experienced recurrent transboundary 

haze episodes in the past few decades due to land and 

vegetation fires in the region. Some of the most severe 

haze episodes have coincided with strong El Niño events 

(Forsyth, 2004). During haze episodes, the concentration 

of aerosol particles in the atmosphere can increase by 

multiple folds relative to normal conditions (Figure 1), as 

was evident during the severe haze episodes in 2013 and 

2015. High aerosol concentrations1 reduce visibility due 

to aerosol scattering effects in the visible band (Lee et 

al., 2016). This implies that high aerosol concentrations 

would similarly affect the transmissivity of the 

atmosphere and the energy generated by solar panels. 

                                                                 
1  Lee et al., 2016 reported that although aerosol 
concentrations are the primary attenuating factor, 
relative humidity exerts an influence on visibility due to 
hygroscopic growth of aerosol particles. The focus of 
this study, however, is on the clearness index instead of 
visibility, and the attenuation of mostly downward 
propagating shortwave radiation rather than 

To understand this impact, the difference in clearness 

index between hazy and non-hazy periods needs to be 

analysed. 

 

Figure 1: 12-hour Island wide averaged PM10 

concentration from 2010 to 2016. PM10 concentrations 

of 25, 50 and 75 µg m-3 are marked with horizontal 

dashed lines. 

While higher aerosol concentrations would lead to an 

increase in visible light scattering, this would not 

necessarily mean a reduction in the clearness index. 

Global Horizontal Irradiance (GHI), a measure of the 

irradiance received by solar panels, can be broken down 

into two components – Direct Normal Irradiance (DNI; 

the forward propagating component) and Diffuse 

Horizontal Irradiance (DHI; the diffuse component). 

Stronger scattering reduces the DNI component, but at 

the same time could enhance the DHI component. This 

implies that the relationship between higher aerosol 

concentrations in the atmosphere and GHI can be 

complicated.  

horizontally propagating visible light. As the primary 
attenuation factor on clearness index is cloud cover, 
aerosol concentration and relative humidity become 
secondary and tertiary factors respectively. Therefore, 
the effect of relative humidity has been excluded in this 
study. 
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Apart from aerosols, clouds play a significant role in 

attenuating the incoming solar irradiance mainly 

through shortwave scattering processes (Matuszko, 

2012). The scattering processes change the direction of 

the downward-propagating shortwave radiation from 

the sun and hence reduce the total amount of solar 

irradiance reaching the surface. A separate study on the 

cloud attenuation effect in Singapore was previously 

conducted and documented (Chia, 2019), and the results 

suggest that cloud spatial distribution greatly influences 

the uncertainty in irradiance forecasts. This is especially 

notable in the equatorial region given there is ubiquitous 

cloud cover during normal climatological conditions and 

often rapid convective cloud formation. The amount of 

cloud cover during hazy periods could differ from normal 

climatological conditions. A severe haze episode often 

coincides with a strong El Niño event, during which the 

region tends to be less cloudy than usual (Harrison and 

Chiodi, 2015). During hazy periods, both the variability in 

cloud cover and aerosol concentrations will collectively 

influence the clearness index. The relative impact of 

these two factors during hazy periods is examined in this 

study. 

2 DATA AND METHODS 
 

2.1 Data 
PM10 concentrations measured at ambient air quality 

monitoring sites, and observations of GHI and cloud 

cover from meteorological stations in Singapore for the 

years 2010 to 2016 were analysed in this study. The 

station locations are shown in Figure 2. 

As the air quality and meteorological stations are not 

collocated, PM10 concentrations and GHI are measured 

at separate locations. During haze episodes, there could 

be hour-to-hour fluctuations in PM10 concentrations 

across stations. For a particular hour, it means the PM10 

concentration measured by an air quality station may 

not be representative of the concentration over the 

nearest meteorological station measuring GHI. 

The impact of such differences can be mitigated by 

averaging the data in both space and time. In this study, 

the 12-hour island wide average of each variable 

observed during the daytime is used (as GHI goes to zero 

at night). The 12-hour average is taken from 7 am to 7 

pm – centred at 1 pm, which is the true solar noon time 

in Singapore. 

2.1.1 Clearness index 

Clearness index is a measure of the atmospheric 

transmissivity of solar irradiance. It is defined as the 

observed GHI at a station divided by the incoming solar 

irradiance assuming the atmosphere is absent. This 

irradiance is calculated based on the orbital dynamics of 

the Earth (Iqbal, 1983), assuming a solar constant of 

1365 W m-2. When attenuating factors such as clouds are 

present in the atmosphere, the clearness index will be 

lower and the GHI will consequently be weaker. 

 

Figure 2: Locations of selected stations that record global horizontal irradiance (red circles), cloud cover (blue crosses) 

and PM10 concentrations (black triangles). Note that S24 records both global horizontal irradiance and cloud cover. 
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2.1.2 Cloud cover 

Clouds have a major influence on clearness index 

(Matuszko, 2012 and Chia, 2019). Cloud observations 

used in this report are recorded hourly by human 

observers based on guidelines specified in the 

International Cloud Atlas published by the World 

Meteorological Organization (WMO). The amount of 

cloud cover is reported in the unit of oktas with values 

ranging from 0 to 8 (WMO, 1975, 1987). Clouds are 

categorised into low, middle or high level clouds as 

defined by having a base height of below 2 km, between 

2 and 6 km and above 6 km, respectively. High level 

clouds have been excluded in this study because they are 

generally ice clouds and have much less impact on visible 

light compared to lower level clouds (Matuszko, 2012). 

2.1.3 PM10 concentration 

PM10 concentrations were used as the indicator of hazy 

conditions. PM10 concentration is defined as the total 

mass per unit air of aerosol particles with diameters of 

10 µm or smaller (Hinds, 1998). As PM10 comprises a 

larger range of particle sizes compared to PM2.5, it is a 

more comprehensive choice for the analysis of scattering 

effects. The mass contributed by PM2.5 (particles with 

diameters of 2.5 µm or smaller) is a subset of PM10 

concentrations.  

While only PM10 measurements at ground level were 

considered in this study, aerosol concentrations at 

higher levels could also contribute to the scattering 

effect (Chew et al., 2013). However, significant 

correlation has been found between aerosol optical 

depths (a measure of aerosol scattering effect) within 

the entire atmospheric column and surface aerosol 

concentration, even at an hourly timescale (Chew et al., 

2011). This suggests that surface aerosol concentrations 

at the daily timescale analysed in this study can account 

for the variation of aerosol scattering effects within the 

atmospheric column. 

2.2 Probability distribution of 

clearness index 
Probability distributions of clearness index using 12-hour 

island wide averaged clearness index data were studied 

under different atmospheric conditions. The 

atmospheric conditions were first differentiated as 

“normal periods” and “hazy periods”. These were 

further sub-divided into the following: “normal periods 

                                                                 
2 For example, the 25%-quantile of a clearness index 
distribution is the value in which 25% of samples have 
clearness index smaller or equal to the value. 

with few clouds”, “normal periods with more clouds”, 

“hazy periods with few clouds” and “hazy periods with 

more clouds”. The cloud conditions were defined based 

on cloud cover amounts being higher or lower than 

specific thresholds. Details on the cloud thresholds are 

discussed in Sec. 3.4.1. 

2.2.1 Discrete probability and cumulative 

distribution functions 

To construct the probability distributions, histograms of 

clearness index with bin size of 0.05 were used so that 

discrete cumulative distribution functions can be 

estimated. The discrete probability functions were 

subsequently deduced from the discrete cumulative 

distribution functions using first-order central finite 

differences.  

2.2.2 Quantile-quantile plot comparison 

To analyse pairs of probability distributions under the 

different atmospheric conditions, quantile-quantile (Q-

Q) plots were used. In a Q-Q plot, the quantiles2 of one 

distribution are compared against the quantiles of 

another distribution. If the data points sit on the identity 

line3, then the two distributions are identical.  

2.3 Probability distribution of cloud 

cover 
The discrete probability functions of cloud cover under 

different atmospheric conditions were constructed by 

building 2D-histograms of cloud cover with bin size of 0.5 

okta. 12-hour Island wide averaged low and middle cloud 

cover data that met the specified atmospheric condition 

were analysed. 

2.4 Two-sample Kolmogorov-Smirnov 

test 
The two-sample Kolmogorov-Smirnov (K-S) test is a one-

sided statistical test for determining if a difference exists 

in two empirical probability distributions constructed 

from different data sets (Wilks, 2011). The null 

hypothesis to be rejected is that the two empirical 

distributions are the same but come from an unspecified 

distribution.  

In this test, the largest absolute difference between the 

empirical cumulative distribution functions ( 𝐷𝑠 ) is 

identified. 

3 A straight line passing through the origin with a 
gradient of one. 
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where 𝛼 is the rejection level with a range from 0 to 1, 

𝑛1 and  𝑛2 are the numbers of sample points in the two 

distributions. In this statistical test, the null hypothesis 

can be rejected with 𝛼 × 100% rejection level4. 

3 RESULTS AND DISCUSSION 

3.1 Relationship between PM10 and 

clearness index 
The daytime relation between island wide averaged 

clearness index and PM10 concentrations is shown in 

Figure 3. The majority of sample points are at PM10 

concentrations < 50 µg m-3. At PM10 concentrations ≥ 50 

µg m-3, data points become increasingly sparse. This is 

similarly reflected in Figure 1, where PM10 

concentrations are generally below 50 µg m-3.  

At PM10 concentrations < 25 µg m-3, the range of 

clearness index values is the most widespread, ranging 

from approximately 0.05 to 0.65. From PM10 

concentrations of 25 µg m-3 to 50 µg m-3, there is a 

reduction in the range of clearness index (the maximum 

of clearness index decreases and the minimum 

                                                                 
4 A lower value in the rejection level indicates a more 
stringent statistical test. 

increases). However, this trend is less apparent in the 

region where PM10 concentrations are between 50 and 

75 µg m-3. Beyond PM10 concentrations of 75 µg m-3, 

there are insufficient data points to deduce if this 

narrowing trend extends to higher concentrations. The 

findings indicate that the probability of extreme GHI 

values (very bright or very dim days) is lower during hazy 

periods. 

3.2 Differentiating normal and hazy 

periods 
Based on the above discussion, PM10 concentrations of 

50 and 75 µg m-3 are potential thresholds to indicate 

transitions in the clearness index distribution with 

respect to increasing concentrations. However, the 75 

µg m-3 threshold is likely to be too stringent as it excludes 

several less severe haze days (i.e. peaks between 50 and 

75 µg m-3 in Figure 1). Therefore, a PM10 concentration 

threshold of 50 µg m-3 was selected to define a hazy 

period in this study. This threshold is similar to the World 

Health Organization (WHO) recommended target (WHO, 

2017), but is a 12-hour daytime average instead of the 

24-hour average used by WHO. Based on this threshold, 

there are 2321 and 134 sample points respectively in 

normal and hazy periods over the seven-year period. 

Figure 3: Scatter plot of PM10 concentrations versus clearness index. Both quantities are 12-hour island wide 

averages during daytime (7 am to 7 pm). PM10 concentrations of 25, 50 and 75 µg m-3 are marked with vertical 

dashed lines. The maximum and minimum clearness index with PM10 values larger than 75 µg m -3 are marked 

with horizontal dashed lines. 
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3.3 Comparison of normal and hazy 

periods 
To investigate the difference in clearness index between 

normal and hazy periods, probability distributions of 

clearness index were constructed for the respective 

periods. The discrete probability functions, together 

with the probability function constructed using sample 

points for all periods are shown in Figure 4. 

 

In Figure 4, the distributions during “all periods” (black) 

and “normal periods” (blue) are largely similar as most 

of the days fall under normal periods. The clearness 

index distribution of hazy periods (red) appears to be less 

widespread compared to normal periods. This supports 

the earlier notion in Sec. 3.1 that the variability of 

clearness index is constrained during hazy periods. 

However, the effect of clouds should be considered, as 

cloud cover patterns during hazy periods may be 

different and hence affect the variability of the clearness 

index as well. 

3.4 Impact of differences in cloud 

amount 
To understand the impact of differences in cloud 

amount, the probability distributions of daytime 12-hour 

averaged cloud cover during normal (Figure 5a) and hazy 

periods (Figure 5b) were compared. Due to the limited 

number of sample points available during hazy periods, 

the probability distribution is less distinct as compared 

to normal periods. Nevertheless, the comparison of 

cloud cover between the two periods clearly shows that 

there are fewer low level clouds during hazy periods. The 

most probable amount of low cloud cover changes from 

approximately 3.25 oktas during normal periods to 1.5 

oktas during hazy periods, but remains similar for middle 

cloud cover. With fewer low level clouds during hazy 

periods, the cloud obscuration effect is weakened. This 

partially explains the lower occurrence of dim events 

during hazy periods, but not the lower occurrence of 

bright events.  

3.4.1 Excluding impact from cloud amount 

differences 

In order to isolate the impact of haze on clearness index, 

the impact of differences in cloud amount should be 

excluded as much as possible. This can be achieved by 

comparing the clearness index distributions when there 

were very few clouds in the sky. Sample points with 

cloud cover less than a certain threshold were then 

chosen to construct clearness index distributions for 

both normal and hazy periods.  

The thresholds of cloud cover were derived based on the 

probabilities shown in Figure 5a and Figure 5b. For 

middle cloud cover, the distribution appears similar for 

both normal and hazy periods and a threshold of 1 okta 

was chosen for simplicity. For low cloud cover, in cases 

when middle cloud cover is less than 1 okta, there is an 

increasing probability of low cloud cover from 0 to 3.5 

Figure 4: Discrete probability functions of daytime clearness index under different atmospheric conditions. 
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oktas during normal periods (Figure 5a). During hazy 

periods (Figure 5b), the same probability shows an 

increasing trend only up to around 2 oktas. To achieve a 

threshold such that the cloud distributions created from 

the remaining sample points were similar for both 

normal and hazy periods, a low cloud cover threshold of 

2 oktas was selected. This is illustrated in the resulting 

cloud probability distributions for normal and hazy 

periods shown in Figure 6a and Figure 6b, constructed 

with 146 and 50 samples respectively. On the other 

hand, the selected thresholds are also effective in 

separating the cases with few and more clouds during 

normal periods. As shown in Figure 4, the former’s 

clearness index distribution (cyan line) clearly sits at the 

brighter end compared to the latter’s (green line). The 

result agrees with our expectation that clouds attenuate 

surface solar irradiance (at 12-hour timescale). 

 

3.5 Impact from haze only 
With only the sample points taken under few clouds 

retained, the clearness index distribution of normal 

periods (magenta) and hazy periods (cyan) can be 

compared in Figure 4. The two distributions appear to 

share a similar shape but the distribution for hazy 

periods is shifted towards lower clearness index values. 

Examining the two distributions further in a Q-Q plot 

(Figure 7), the points are nearly parallel to the identity 

line but displaced slightly towards the axis of normal 

periods. This suggests that haze has an overall 

attenuating effect on the clearness index. Assuming the 

same cloud distribution, it can therefore be concluded 

that a hazy period will likely be dimmer than a normal 

period. 

 

 

Figure 5: The probability of 12-hour averaged low and middle cloud cover. 

Figure 6: The probability of 12-hour averaged low and middle cloud cover, when there are relatively few clouds. 
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To verify that haze does have an impact on the clearness 

index, a two-sample K-S test is performed as described 

in Sec. 2.4. The null hypothesis to be rejected is that the 

clearness index distributions of normal and hazy periods 

with few clouds are the same. With 𝐷𝑠  = 0.22 at 47.5-

percentile (see Figure 8), 𝑛1 = 146 and 𝑛2 = 50, the null 

hypothesis can be rejected at a rejection level of 10% 

(the p-value is 0.06 given the null hypothesis). This test 

could be improved in future if the datasets are 

accumulated over a longer period of time.  

 

A point on the use of clearness index in this study needs 

to be highlighted. Since clearness index is the ratio 

between GHI and incident irradiance at the top of the 

atmosphere, it is designed to better capture the 

variation in DNI (the forward propagating component of 

GHI) rather than DHI (the diffuse component). Due to 

increased aerosol concentrations and their scattering 

effect during hazy periods, DHI could be a more 

important factor but its variability is not well 

represented by the clearness index. Nevertheless, a 

similar conclusion that air pollution can attenuate 

surface solar irradiance has also been found in a study 

conducted in eastern China (Li et al., 2017). 

 

 

Figure 7: Quantile-quantile plot of clearness index distributions of normal and hazy periods with few clouds. The 

data points from the 10th to 90th percentiles (inclusive) with equal spacing are plotted. 

Figure 8: Cumulative distribution functions of daytime clearness index under different atmospheric conditions. 
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3.6 Impact of clouds during hazy 

periods 
For a more complete analysis of hazy periods, the 

clearness index distribution during hazy periods with 

more clouds is also shown in Figure 4 (yellow). This 

distribution is shifted towards the far dimmer side 

compared to both hazy and normal periods with few 

clouds. While this suggests that cloud attenuation 

effects could be stronger compared to haze, it is difficult 

to draw such a conclusion based on this analysis alone. 

Under such atmospheric conditions, the PM10 

concentrations can range from fifty to hundreds of µg m3 

(Figure 9), middle cloud cover can range from around 1 

to 6 oktas and low cloud cover can range from around 2 

to 5 oktas (Figure 5b). Furthermore, the limited number 

of sample points available is insufficient to discern the 

respective attenuation effects of haze and cloud. 

4 SUMMARY 
In this study, daytime hours from 2010 to 2016 were 

categorised into normal or hazy periods. A PM10 

concentration threshold of 50 µg m-3 was selected to 

define hazy conditions. During hazy periods, the discrete 

probability distribution was shown to be sharper 

compared to normal periods. The reduced probability of 

dim events may partially be explained by the presence of 

fewer clouds during hazy periods. When examining only 

cases when there are few clouds in the sky, both 

distributions share a similar shape but the distribution 

during hazy periods is shifted towards dimmer 

conditions. This suggests that haze has an overall 

attenuating effect on the clearness index and hence GHI. 

However, cloud attenuation effects remain important 

even during hazy periods and an effective solar 

forecasting system must be able to predict both the haze 

and cloud spatial distributions reliably.  
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ABSTRACT 
An inventory-based anthropogenic heat flux (QF) 

database is estimated for Singapore for 2016. A 

combination of top-down and bottom-up approaches is 

used to estimate the hourly QF from residential and non-

residential buildings, light and heavy industry, road 

traffic and railway network. A diurnal profile is further 

calculated and applied to the entire urban area to obtain 

the diurnal cycle of QF. The results are calculated for a 

300 m resolution grid and are ready to be implemented 

in the MORUSES urban canopy model. Industry is found 

to be the sector with the highest emissions, with 

maximum hourly cell values of 300 W m-2 and 3500 W m-

2 from light and heavy industry, respectively. The second 

highest emitting sector is non-residential buildings, 

which can reach maximum hourly grid values of 350 W 

m-2 in the central business district. Emissions from 

residential buildings scale with density and height of 

buildings, reaching up to 30 W m-2 in individual cells. The 

road transport sector reaches maximum hourly cell 

values of 60 W m-2 in areas with expressways and the 

railway network emits up to 4 W m-2. 

1 INTRODUCTION 
The anthropogenic heat flux (QF) is the heat released to 

the atmosphere by human activities. This heat flux is the 

sum of the heat released by road traffic (QV), industries 

(QI), residential and non-residential buildings (QB) and 

human metabolism (QM). Hourly QF values can be of 

similar size or even larger than other terms of the surface 

energy balance equation (Quah and Roth 2012). This is 

especially true in commercial or high residential 

neighbourhoods in certain times of the day. For example, 

Ichinose et al. (1999) estimated hourly peak values of up 

to 908 (1590) W m-2 in central Tokyo during summer 

(winter). On the other hand, Pigeon et al. (2007) found 

average seasonal values of up to 50 (100) W m-2 during 

summer (winter) in the central area of Toulouse, a 

medium sized city in the south of France. Oke et al. 

(2017) shows city wide seasonal values ranging between 

15 and 300 W m-2 depending on the size and location of 

the city and the season, and neighbourhood hourly 

values between 5 and 1600 W m-2 depending on the 

Local Climate Zone (LCZ, Stewart and Oke, 2012). 

Numerical studies have shown remarkable impacts on 

night-time temperature when including QF. 

Bohnenstengel et al. (2014) found an increase in sensible 

and latent heat fluxes producing a maximum 

temperature increase of 1.5 K in central parts of London 

in December when considering QF in their simulations. 

Another example is found in Fan and Sailor (2005) where 

QF was found to contribute 2.5 (0.8) K to the night-time 

urban heat island in Philadelphia during winter 

(summer). These results show the importance of 

considering QF when simulating the urban environment. 

Since QF cannot be directly measured, indirect methods 

are used to estimate this term. Sailor (2011) 

distinguished three different approaches: (i) inventory-

based approach, (ii) micro meteorologically-based 

energy budget closure methods and (iii) building energy 

model-based approaches. While all have their own 

advantages and limitations, it is important to note that a 

high level of uncertainty is present in any of them. 

Inventory-based approaches are based on energy 

consumption and convert that data into QF release. Two 

different approaches exist, i.e. bottom-up and top-

down, depending on the nature of the data source 

considered. Two examples of inventory-based QF 

estimations are Pigeon et al. (2007) and Quah and Roth 

(2012), although more exist in the literature. The 

accuracy of the inventory-based approach depends on 

the space and time resolution of the available data. The 

energy budget closure method calculates QF as the 

residual from the measurement of the remaining fluxes 

of the surface energy balance (SEB) equation, namely net 

radiation, sensible heat flux, latent heat flux and the heat 

stored inside buildings and in the soil (ΔQS). This method, 

applied e.g. by Pigeon et al. (2007) and Offerle et al. 

(2005), has a number of limitations. They include the 

impossibility to divide the final value between the 

different sources of QF, the lack of definition of a diurnal 

profile due to difficulties in properly estimating ΔQS, or 

that any potential error during the SEB measuring 

process would be passed on to QF.  
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Building energy models aim to estimate the energy 

consumed by buildings and hence their emission of heat. 

Although these models are only applied to buildings, 

they have the advantage of allowing the coupling with an 

atmospheric model. Examples of such coupling are the 

studies by Kikegawa et al. (2003), Salamanca et al. (2011) 

or Bueno et al. (2012). The energy building model from 

Salamanca et al. (2011) was used in combination with a 

bottom-up inventory-based approach in Chow et al. 

(2014) to estimate QF in Phoenix, USA. Finally, models 

integrating every component of QF also exist in the 

literature. This is the case for the Large Scale Urban 

Consumption of energy model (LUCY, Allen et al. 2010), 

which computes QF from the global to city scale based on 

population density, business hours, vehicles fleet and 

traffic pattern, primary energy and electricity 

consumption, electricity production and temperature 

data. 

In this work we present an inventory of the QF release in 

Singapore valid for 2016, based on a combination of top-

down and bottom-up approaches. The current study 

uses a similar methodology to the one presented in Quah 

and Roth (2012). It extends the geographic region of that 

Figure 1: Hourly QF [W m-2] by sector. (a) Residential, (b) non-residential, (c) road traffic, (d) railway, (e) light industry 

and (f) heavy industry. Left colour scale refers to (a)-(e) and right colour scale to (f). 
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work to include the entire island and also includes the 

industrial sector, which was not considered previously. 

The present database is built to be included in the 

uSINGV model (Simón-Moral et al. 2020, Dipankar et al. 

2020, under revision) as part of numerical weather 

prediction improvement efforts by the Meteorological 

Service Singapore (MSS). 

2 METHODOLOGY 
An inventory-based estimation of QF release in Singapore 

is presented here. A combination of bottom-up and top-

down approaches is used to calculate the energy 

consumption based on 2016 information, which is then 

approximated to QF. While the bottom-up approach uses 

small scale information (e.g. average household monthly 

energy consumption) and scales it upward to larger 

scales, the top-down approach is based on large scale 

data (e.g. yearly or city scale) and downscales them to 

smaller scales (Quah, 2012). Emissions from residential 

and non-residential (commercial) buildings, light and 

heavy industry, road traffic and railway are considered. 

Results are presented as hourly averages, calculated by 

dividing daily totals by 24 hours. A diurnal profile for the 

calculation of the diurnal evolution of QF is presented at 

the end. The methodology used for each sector is 

presented below. 

2.1 Buildings 
We divide the calculation of the building sector into non-

residential (𝑄𝐵𝑁𝑂𝑅𝐸𝑆 ) and residential (𝑄𝐵𝑅𝐸𝑆 ) buildings. 

The former category includes every building which is not 

residential or industrial, such as e.g. hotels, educational 

buildings, or shopping malls. 𝑄𝐵𝑅𝐸𝑆  is further divided in 

public (Housing and Development Board, HDB) and 

private housing.  

2.1.1 Residential buildings 

A bottom-up approach is applied for the calculation of 

the energy consumed by private and public houses. The 

energy consumed by a residential building is divided into 

the energy consumed by the dwellings and the common 

areas, as: 

𝑄𝐵𝑅𝐸𝑆 =∑𝑛𝑑
𝑑

𝐸𝑑 + 𝐸𝑐𝑜𝑚𝑚𝑜𝑛 

Where d refers to each dwelling type within a building, 

nd and Ed are the number of and energy consumed 

(electricity and gas) by dwellings of each dwelling type, 

respectively, and Ecommon is the energy consumed by 

common areas. Monthly electricity consumption (W) by 

postal code and dwelling type and gas consumption (W) 

by dwelling type (averaged across the entire country) for 

2016 is provided by the Energy Market Authority (EMA). 

A georeferenced 3D building database provided by 

Singapore Land Authority (SLA) is used to assign building 

properties (e.g. area and height) and location to each 

postal code. Energy Use Intensity (EUI, W m-2) in 

common areas is taken from Quah (2012). 

In order to calculate nd in residential buildings, the area 

of each storey is divided by the average dwelling area of 

each particular building, considering the percentage of 

each storey occupied by common areas, and this value is 

multiplied by the number of storeys. The average 

dwelling area in public buildings is computed based on 

the dwelling types per building provided by the EMA 

database and the area of each dwelling type provided by 

HDB. The fraction occupied by common areas is 

estimated based on a selection of floor plans provided 

by constructors. In the case of private buildings, the area 

per dwelling is obtained from the Urban Redevelopment 

Authority Real State Information System (URA-REALIS), 

by averaging the apartments and condominiums on sale 

from 2010 to 2014. Corrections were made to the height 

of buildings in the 3D database as an approximate 

overestimation of 6 meters was found from individual 

building inspection carried out with Google Street View. 

2.1.2 Non-residential buildings 

The energy consumption for non-residential buildings is 

defined by the EUI of the activity performed inside, 

identified through a use code provided by the SLA 

building data base. The building area provided by the SLA 

buildings database (floor area multiplied by number of 

storeys) is then multiplied by the corresponding EUI 

taken from Quah (2012). Assumptions are made in terms 

of building EUI assignments as not every building use was 

considered in Quah (2012). These assumptions are made 

based on similarities in activities performed in each 

building type. As in the case of residential buildings, the 

height of each building was corrected. 

2.2 Industry 
The industrial sector is divided in light industry, mostly 

related to manufacturing activities, and heavy industry, 

which includes oil refineries, power and incineration 

plants, industrial combustion and concrete blasting 

plants. While the manufacturing industry mainly uses 

electricity, the rest uses diesel, fuel gas, fuel oil or natural 

gas as fuel sources (National Environment Agency, NEA, 

2016). A combination of top-down and bottom-up 

approaches is used here. 
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2.2.1 Light industry 

A top-down approach is applied to calculate the energy 

consumed by the light industry sector. The yearly 

electricity consumption by the manufacturing industry 

provided by the Singapore Energy Statistics 2017 report 

of the Energy Market Authority (SES, 2017) is divided by 

the sum of the area of every building dedicated to 

manufacturing processes. This electricity consumption 

density is multiplied by each building’s area to assign 

their yearly energy consumption contribution. The yearly 

value is divided by 365 days and 24 hours to get daily and 

hourly averages, respectively, not distinguishing 

between weekdays and weekends. This approximation is 

done as no further data was available to distinguish 

between different manufacturing processes or day of 

the week. 

2.2.2 Heavy industry 

2.2.2.1 Refineries 

This subsector converts crude oil into other products, 

e.g. gasoline, diesel or oil, releasing heat produced in the 

                                                                 
1 Megatonne of oil equivalent (Mtoe) is defined as the 
energy released from burning a megaton of crude oil. 

process to the air and ocean. Based on SES (2017), 

refineries used 51.5 Mtoe1 of crude oil to produce 49.4 

Mtoe of distilled products in 2016. The remaining 2.1 

Mtoe (24423 GW when converted to energy) is 

considered as heat release and is divided between the 

refineries across Singapore, based on their working 

hours and the sum of the working hours of every 

refinery, as: 

𝑄𝐼𝑅𝐸𝐹 = ∑ 𝑛ℎ𝑖𝑖
𝐸𝑇

365𝑛ℎ𝑇
  

 
where nhi is the daily working hours by each refinery 

plant i, and ET and nhT are the total energy released and 

total working hours by refinery sector, respectively, the 

latter calculated as the sum of all refinery daily working 

hours. Location and working hours for each plant are 

taken from NEA (2016). 20% of the total wasted heat is 

assumed to be released to the ocean. This conservative 

estimate is used because of the lack of more detailed 

information. 

Figure 2: Hourly QF [W m-2] from all individual sectors considered in Fig. 1 
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2.2.2.2 Power plants 

Main power producers (MPP) generated 48299.4 GW in 

2016 by converting different fuels (mainly natural gas, 

coal and petrol) into electricity, releasing heat to the 

atmosphere. The released heat depends on the 

efficiency of the technology used. Based on generation 

capacities, technologies used and market shares by 

power plant reported in SES (2017), 74% of the power 

generated by MPP in 2016 was produced by Combined 

Cycle Gas Turbine plants (CCGTs), Co-Generation Plants 

and/or Tri-generation Plants (The three referred 

hereafter as GEN) and 16% by steam turbines (ST). The 

remaining 10%, which is produced by other 

technologies, is neglected due to lack of technical 

information. A mean heat loss of 18.75% is assigned as 

an approximation for GEN based on information given on 

the Tuas Power website for Co- and Tri-generation 

technologies, and 64.05% for ST based on Kumar et al. 

(2017). 

A heat loss of 13768.4 GW from ST plants is estimated 

with a reverse calculation from the 7727.9 GW (16% of 

the total) produced by this technology. Based on 

information given by Tuas Power website, part of the 

fuel used by GEN plants is transformed into electricity 

and the remainder is converted to heat, of which part is 

captured to heat water to produce steam and part is 

released to the atmosphere. As the use of the heat 

captured in the process is not clear, the estimation of the 

heat loss by GEN is based on the fuel amount used. 

Considering 89376.6 GW was used by ST and GEN (SES, 

2017) and ST used 21496.3 GW, 67880.3 GW was 

therefore used by GEN, releasing 12727.6 GW to the 

atmosphere. The results are divided by 365 days to 

estimate daily values, hence not distinguishing between 

weekdays and weekends. 

These values are distributed across plants based on their 

locations (NEA, 2016), technology used, and percentage 

of total electricity produced by each plant (Table 1). Note 

that only MPPs are considered as the location and 

capacities of auto producers are not available. Of the 

MPPs, Pacific Light and Tuaspring chimney locations are 

not provided. Hence, they are not considered; which, 

however, is an omission of only about 12.4% of the total 

power generated in Singapore (Table 1). 

2.2.2.3 Incineration, industrial combustion 

and concrete batching/grift blasting 

plants 

The heat released by the rest of the heavy industry sub 

sector is computed based on the methodology 

presented in Lee et al. (2014) and adapted for Korea by 

Koralegedara et al. (2016). Accordingly heat release is 

estimated as a function of CO and NOx emissions, as: 

Table 1: Name of power generation plant, percentage of total energy produced and partitioning according to 

technology used. GEN accounts for CCGT, Co- and Tri- generation plants and ST for Steam turbines plants. Source: 

Singapore Energy Statistics, 2017. 

Name % of total % GEN % ST 

Tuas Power Generation Pte Ltd 21 76.7 23.3 

Senoko Energy Pte Ltd 19.2 85.0 15 

YTL PowerSeraya Pte Ltd 17.7 47.5 46.7 

Keppel Merlimau Cogen. Pte Ltd 10.4 100.0 - 

SembCorp Cogen Pte Ltd 10.4 100.0 - 

PacificLight Power Pte Ltd 8.8 100.0 - 

Tuaspring Pte Ltd 3.6 100.0 - 

Others 9 - - 
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𝑄𝐼𝑖𝑛𝑐 = 0.5(2.55𝑋𝐶𝑂
0.64) + 0.5(3.71𝑋𝑁𝑂𝑥

0.69) 

 
where XCO and XNOx are the hourly averaged emissions of 

CO and NOx in kg km-2 h-1, respectively. Data of emissions 

and locations are obtained from NEA (2016). 

 

2.3 Traffic 
The heat released by road motor vehicles is calculated 

based on Grimmond (1992) as: 

𝑄𝑉 =∑(𝑛𝑣𝑖𝑗𝑘𝐸𝑉𝑖𝑗𝑑𝑘)

𝑖𝑗𝑘

3600⁄  

𝐸𝑉𝑖𝑗 = (𝑁𝐻𝐶𝑗𝜌𝑗) 𝐹𝐸𝑖𝑗⁄  

where the subscripts i, j and k refer to vehicle class, fuel 

type and road segment, respectively, nvijk is the daily 

number of vehicles of class i, consuming fuel type j on 

road segment k, dk is the distance travelled on k, EVij is 

the energy used per vehicle of class i and fuel type j, NHCj 

is the net heat combustion of fuel j, ρj is the density of 

the fuel type j and FEij is the mean fuel economy of 

vehicles of class i and fuel type j. 

Traffic count information by road segment from 2013 

(bottom-up approach) and a generalized island wide 

vehicle types breakdown per road segment (top-down) 

is used to calculate the number of each vehicle type on 

each road segment (NEA, 2016). Data from 2013 is used 

here because of data availability. NHCj, ρj and FEij are 

taken from Quah and Roth (2012). The distribution of 

vehicle types per road segment doesn’t distinguish 

between fuel types or engine displacement, therefore 

the 2016 national fleet data generated by the Land 

Transport Authority published by Singapore government 

data portal is used for further disaggregation. While each 

vehicle type mostly uses one single fuel type (e.g. 96% of 

cars use petrol and 95% of commercial vehicles use 

diesel), cars are further divided according to their engine 

size as >1600 cc (45%) and < 1600 cc (55%). 

2.4 Railway 
The transport related electricity consumption published 

in SES (2017) is used to estimate the heat released by the 

railway system (Mass Rapid Transit, MRT) via a top-down 

approach. The yearly value for 2016 which was 2639.4 

GWh and the georeferenced rail network are used to 

define an electricity consumption density which is 

assigned to every network segment. The energy 

consumed by subway trains is divided into the energy 

consumed by engines, auxiliary systems (e.g. air 

conditioning, lights, etc) and brakes (Villalba Sanchís et 

al. 2016). The breakdown of the total consumption is 

72.5, 22.5 and 5%, respectively (Ignacio Villalba Sanchís, 

personal communication). From this breakdown, we 

consider that the engines are 98% efficient and we 

approximate the heat released from brakes and auxiliary 

systems to the energy consumed, hence 28.95% of the 

total consumed energy is released as heat. In addition, 

part of the network is below ground level, so the heat is 

not entirely released to the atmosphere, being mostly 

contained within the tunnels. Due to a lack of 

information about how much of the underground 

released energy escapes to the atmosphere, only the 

segments above ground are accounted for. 

2.5 Diurnal cycle 
A diurnal profile based on hourly data is defined and 

applied equally across the island. This diurnal profile is 

calculated as an average of the three diurnal profiles 

presented in Quah and Roth (2012) for residential, mixed 

commercial-residential and commercial areas, 

respectively. The averaged diurnal profile does not 

represent industry and more work is therefore needed 

to define a diurnal profile for each sector. 

3 RESULTS 
The methodology described above is applied to a 300 x 

300 m resolution grid covering most of Singapore. 

Results grouped by sectors are presented in Fig. 1. The 

sum of all sectors is shown in Fig. 2 and the diurnal 

profile is depicted in Fig. 3.  

The residential sector contributes to total hourly QF with 

11809.3 W m-2. The highest grid-cell values range 

between 20 and 30 W m-2 and are found in the centre 

south of the island, where there is a higher 

concentration of high-rise private apartments (Fig. 1a). 

Relatively high values are also found in the northeast of 

the island, mainly due to the contribution of HDB 

developments. Areas with zero or very low values 

correspond to nature reserves, big parks, airports and 

industries (Fig. 1e and f). 

Non-residential buildings contribute 22811.5 W m-2 to 

the hourly total and are spread across most of Singapore. 

The highest grid-cell QF (150 – 350 W m-2) can be found 

in the commercial and business districts located in the 

south of the island (Fig. 1b). Other secondary maxima are 

located in areas with a high concentration of shopping 

malls. The main contribution in those areas comes from 

the extensive use of air conditioning (Quah and Roth, 

2012). 



Issue #5 MSS Research Letters Page 40 
 

 

Traffic contributes 21764.0 W m-2 to the hourly total QF. 

Grid-averaged values along highways and major roads 

range between 20 and 60 W m-2 (Fig. 1c). Smaller roads, 

closer to residential and commercial areas release 

approximately 5 to 15 W m-2. The MRT network 

contributes 418.5 W m-2 to the hourly total. Maximum 

grid-cell values are ~4 W m-2, with the majority of cells 

contributing ~1 W m-2 (Fig. 1d). 

The industrial sector, primarily located in the southwest 

and some areas of the north and northeast, is 

responsible for the largest QF contribution. The light 

industrial subsector releases an hourly total of 26611.5 

W m-2, with some grid-cell values reaching 200–300 W 

m-2 (Fig. 1e). Heavy industry releases an hourly total of 

59138.0 W m-2 and can reach individual cell values of up 

to 3500 W m-2 (Fig. 1f). It is important to note that heavy 

industry releases from chimneys are averaged across 

high resolution 300 x 300 m grid-boxes, hence resulting 

in higher QF values than what was obtained in a study for 

Brisbane, Australia, using a lower resolution approach 

(Khan and Simpson (2001), with similar or even lower 

total QF. 

4 DISCUSSION 
A high-resolution inventory based QF database for 

Singapore is presented in this research letter. The 

contributions of residential and non-residential 

buildings, road traffic, railway, light and heavy industrial 

sectors are considered separately and in total. Based on 

data availability, different methodologies are used to 

estimate contributions from each sector. 

The industrial sector has been found to contribute the 

most to the total QF release, especially in the case of the 

heavy industry. The values obtained for the latter are 

larger than the ones obtained in other studies, e.g. Khan 

and Simpson (2001). Part of this difference can be 

explained by the higher resolution used here compared 

to the 2 km used in their study. The second highest 

contribution is from the non-residential building sector 

which includes shopping malls, offices and other 

services. Traffic has been found to contribute more than 

the residential sector in total values. Overall, the results 

obtained in every sector agree with the ones presented 

in Oke et al. (2017).  

One of the main limitations of the present inventory is 

the lack of inclusion of human metabolism. It has not 

been considered due to the inherent difficulty to provide 

an accurate island-wide estimation. However, this 

component accounts only for ~5–20% of the total QF 

release, depending on the neighbourhood (residential or 

commercial) and whether it is a weekday or weekend 

(Quah and Roth, 2012). 

Figure 3: Diurnal profile of the dimensionless factor to obtain hourly QF. 
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Two other limitations are the consideration of a single 

diurnal profile for the entire island and the lack of 

differentiation between weekdays and weekends. The 

reason for not defining an activity- or day-related diurnal 

profile is a model limitation, as the final goal of the 

present work is to provide an input for the uSINGV 

model. Therefore, this inventory needs further 

improvements in order to be used for other purposes or 

to be implemented in more sophisticated urban models. 
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GLOSSARY 
 

 

Anthropogenic heat flux (QF): A measure of heat released to the atmosphere by human activities. This heat flux is the 

sum of the heat released by road traffic (QV), industries (QI), residential and non-residential buildings (QB) and human 

metabolism (QM). 

 

Clearness index: A measure of the atmospheric transmissivity of solar irradiance. It is defined as the observed GHI at a 

station divided by the incoming solar irradiance assuming the atmosphere is absent. 

 

Cloud Cover: Cloud observations recorded hourly by human observers based on guidelines specified in the International 

Cloud Atlas published by the World Meteorological Organization (WMO). The amount of cloud cover is reported in the 

unit of oktas with values ranging from 0 to 8 (WMO, 1975, 1987). 

 

Confidence Levels: Measures given by the NOAA-20 active fire product that are used to assess the likelihood of false 

detections of hotspots. The Confidence Levels of the algorithm are a heuristic measure determined by the number of 

adjacent cloud pixels, adjacent water pixels, and temperature thresholds. 

 

Energy Use Intensity (EUI): The energy consumption for non-residential buildings is defined by the EUI of the activity 

performed inside, identified through a use code provided by the SLA building data base. 

 

European Centre for Medium-range Weather Forecasts (ECMWF): A research institute and operational NWP centre 

dedicated to improving forecasts in the 7 to 15-day window. Besides medium-range forecasts, it also provides additional 

forecasts such as those at the sub-seasonal to seasonal timescale. 

 

Fire Radiative Power (FRP): A measure of the rate of radiant heat output from a fire. 

 

Global Horizontal Irradiance (GHI): A measure of the irradiance received by solar panels. 

 

Numerical Weather Prediction (NWP): Computer models that solve mathematical equations representing atmospheric 

physics. Used extensively in weather forecasting. 

 

PM10 concentration: Defined as the total mass per unit air of aerosol particles with diameters of 10 μm or smaller. 

 

Regional Climate Models (RCMs): Similar to global climate models, but run for a region (or limited area) in order to 

achieve a finer resolution. 

 

Singapore Land Authority (SLA): A statutory board under the Ministry of Law of the Singapore Government focusing on 

land resource optimization. It has 2 main roles: developmental and regulatory. 

 

Singapore Variable Resolution- Data Assimilation (SINGV- DA): MSS’s integrated regional data assimilation based 

numerical weather prediction system, developed jointly in collaboration with the UK Met Office.  

 

Surface solar irradiance: Also known as global radiation, it is the solar radiation flux on a horizontal earth surface; it is 

expressed in Wm-2. 

Urban Heat Islands (UHIs): An urban or built up area that is considerably warmer than the surrounding areas.
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Visible Infrared Imaging Radiometer Suite (VIIRS): A sensor designed and manufactured by the Raytheon Company on 

board the Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 weather satellites. VIIRS is one of five 

key instruments on board Suomi NPP, launched on October 28, 2011. 

 

World Meteorological Organisation (WMO): An agency under the United Nations for meteorology (both weather and 

climate), as well as operational hydrological services. 
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